Chaotic Motions of the van der Pol-Duffing Oscillator Subjected to Periodic External and Parametric Excitations with Delayed Feedbacks  

在线阅读下载全文

作  者:Liang-qiang ZHOU Fang-qi CHEN 

机构地区:[1]School of Mathematics,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China

出  处:《Acta Mathematicae Applicatae Sinica》2024年第4期1111-1126,共16页应用数学学报(英文版)

基  金:supported by the National Natural Science Foundation of China(No.11772148,12172166 and 11872201);China Postdoctoral Science Foundation(No.2013T60531)。

摘  要:Chaotic dynamics of the van der Pol-Duffing oscillator subjected to periodic external and parametric excitations with delayed feedbacks are investigated both analytically and numerically in this manuscript.With the Melnikov method,the critical value of chaos arising from homoclinic or heteroclinic intersections is derived analytically.The feature of the critical curves separating chaotic and non-chaotic regions on the excitation frequency and the time delay is investigated analytically in detail.The monotonicity of the critical value to the excitation frequency and time delay is obtained rigorously.It is presented that there may exist a special frequency for this system.With this frequency,chaos in the sense of Melnikov may not occur for any excitation amplitudes.There also exists a uncontrollable time delay with which chaos always occurs for this system.Numerical simulations are carried out to verify the chaos threshold obtained by the analytical method.

关 键 词:Van der Pol-Duffing oscillator time delay CHAOS parametric excitation Melnikov method 

分 类 号:O415.5[理学—理论物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象