检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xue-Yang Qin Li-Shuang Li Jing-Yao Tang Fei Hao Mei-Ling Ge Guang-Yao Pang 秦雪洋;李丽双;唐婧尧;郝飞;盖枚岭;庞光垚(School of Computer Science and Technology,Dalian University of Technology,Dalian 116024,China;School of Computer Science,Shaanxi Normal University,Xi’an 710119,China;School of Computer Engineering,Weifang University,Weifang 261061,China;Guangxi Colleges and Universities Key Laboratory of Intelligent Industry Software,Wuzhou University,Wuzhou 543002 China)
机构地区:[1]School of Computer Science and Technology,Dalian University of Technology,Dalian 116024,China [2]School of Computer Science,Shaanxi Normal University,Xi’an 710119,China [3]School of Computer Engineering,Weifang University,Weifang 261061,China [4]Guangxi Colleges and Universities Key Laboratory of Intelligent Industry Software,Wuzhou University,Wuzhou 543002 China
出 处:《Journal of Computer Science & Technology》2024年第4期811-826,共16页计算机科学技术学报(英文版)
基 金:supported by the National Natural Science Foundation of China under Grant No.62076048.
摘 要:Image-text retrieval aims to capture the semantic correspondence between images and texts,which serves as a foundation and crucial component in multi-modal recommendations,search systems,and online shopping.Existing mainstream methods primarily focus on modeling the association of image-text pairs while neglecting the advantageous impact of multi-task learning on image-text retrieval.To this end,a multi-task visual semantic embedding network(MVSEN)is proposed for image-text retrieval.Specifically,we design two auxiliary tasks,including text-text matching and multi-label classification,for semantic constraints to improve the generalization and robustness of visual semantic embedding from a training perspective.Besides,we present an intra-and inter-modality interaction scheme to learn discriminative visual and textual feature representations by facilitating information flow within and between modalities.Subsequently,we utilize multi-layer graph convolutional networks in a cascading manner to infer the correlation of image-text pairs.Experimental results show that MVSEN outperforms state-of-the-art methods on two publicly available datasets,Flickr30K and MSCOCO,with rSum improvements of 8.2%and 3.0%,respectively.
关 键 词:image-text retrieval cross-modal retrieval multi-task learning graph convolutional network
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.218.137.145