Analytical Verification of Performance of Deep Neural Network Based Time-synchronized Distribution System State Estimation  被引量:1

在线阅读下载全文

作  者:Behrouz Azimian Shiva Moshtagh Anamitra Pal Shanshan Ma 

机构地区:[1]School of Electrical,Computer and Energy Engineering,Arizona State University,Tempe,AZ 85281,USA [2]Quanta Technology,Raleigh,NC 27607,USA

出  处:《Journal of Modern Power Systems and Clean Energy》2024年第4期1126-1134,共9页现代电力系统与清洁能源学报(英文)

基  金:supported in part by the Department of Energy(No.DE-AR-0001001,No.DE-EE0009355);the National Science Foundation(NSF)(No.ECCS-2145063)。

摘  要:Recently,we demonstrated the success of a time-synchronized state estimator using deep neural networks(DNNs)for real-time unobservable distribution systems.In this paper,we provide analytical bounds on the performance of the state estimator as a function of perturbations in the input measurements.It has already been shown that evaluating performance based only on the test dataset might not effectively indicate the ability of a trained DNN to handle input perturbations.As such,we analytically verify the robustness and trustworthiness of DNNs to input perturbations by treating them as mixed-integer linear programming(MILP)problems.The ability of batch normalization in addressing the scalability limitations of the MILP formulation is also highlighted.The framework is validated by performing time-synchronized distribution system state estimation for a modified IEEE 34-node system and a real-world large distribution system,both of which are incompletely observed by micro-phasor measurement units.

关 键 词:Deep neural network(DNN) distribution system state estimation(DSSE) mixed-integer linear programming(MILP) ROBUSTNESS trustworthiness 

分 类 号:TM73[电气工程—电力系统及自动化] TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象