镍基单晶高温合金发展趋势:新型研究技术驱动合金化设计  被引量:1

Development Trend of Nickel-Based Single Crystal Superalloys:Alloy Design Driven by New Research Technology

在线阅读下载全文

作  者:崔壮 刘满平[1] 曾迎 马辉[1] 孙少纯[1] 赵国平[1] Cui Zhuang;Liu Manping;Zeng Ying;Ma Hui;Sun Shaochun;Zhao Guoping(School of Materials Science and Engineering,Jiangsu University,Zhenjiang 212013,China;School of Materials Science and Engineering,Southwest Jiaotong University,Chengdu 610031,China)

机构地区:[1]江苏大学材料科学与工程学院,江苏镇江212013 [2]西南交通大学材料科学与工程学院,四川成都610031

出  处:《稀有金属材料与工程》2024年第8期2375-2389,共15页Rare Metal Materials and Engineering

基  金:国家自然科学基金-联合基金重点项目(U22A20187)。

摘  要:镍基单晶高温合金成分复杂且任一元素合金化作用不同,传统的“经验-试错”及相图计算等合金化设计方法难以满足新型合金快速研发的需求。“材料基因组工程”可以快速获得材料成分-组织-工艺-性能之间的关系,极大提高了新型材料的研发速率,降低生产成本。本文简述了镍基单晶高温合金的合金化设计发展趋势,包括高通量制备与表征技术、机器学习等新型研究技术在合金化设计中的应用,并阐述了原子探针层析技术定量研究合金微观组织中元素特征的能力,以期为镍基单晶高温合金的合金化设计提供思路。Nickel-based single crystal superalloys are composed of various elements,each of which has a unique strengthening effect.It is difficult to realize the rapid development of new alloys by traditional alloying design methods such as“trial and error”and phase diagram calculation.The relationship between composition,organization,technology and properties can be quickly obtained by“material genome engineering”,which greatly improves the research and development rate of materials and reduces the production cost.The development trend of alloying design of nickel-based single crystal superalloys was briefly described,including the application of new research technologies such as high throughput preparation and characterization technology and machine learning in alloying design.The ability of atom probe tomography(APT)to quantitatively study the content and distribution of elements in the microstructure of alloys was also expounded.It is expected that this paper can provide ideas for alloying design of nickel-based single crystal superalloys.

关 键 词:单晶高温合金 合金化 高通量 机器学习 原子探针 

分 类 号:TG146.15[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象