LÉVY AREA ANALYSIS AND PARAMETER ESTIMATION FOR FOU PROCESSES VIA NON-GEOMETRIC ROUGH PATH THEORY  

在线阅读下载全文

作  者:Zhongmin QIAN Xingcheng XU 钱忠民;徐兴成(Mathematical Institute,University of Oxford,Oxford,OX26GG,UK;Shanghai Artificial Intelligence Laboratory,Shanghai,200232,China;School of Mathematical Sciences,Peking University,Beijing,100871,China)

机构地区:[1]Mathematical Institute,University of Oxford,Oxford,OX26GG,UK [2]Shanghai Artificial Intelligence Laboratory,Shanghai,200232,China [3]School of Mathematical Sciences,Peking University,Beijing,100871,China

出  处:《Acta Mathematica Scientia》2024年第5期1609-1638,共30页数学物理学报(B辑英文版)

基  金:supported by Shanghai Artificial Intelligence Laboratory.

摘  要:This paper addresses the estimation problem of an unknown drift parameter matrix for a fractional Ornstein-Uhlenbeck process in a multi-dimensional setting.To tackle this problem,we propose a novel approach based on rough path theory that allows us to construct pathwise rough path estimators from both continuous and discrete observations of a single path.Our approach is particularly suitable for high-frequency data.To formulate the parameter estimators,we introduce a theory of pathwise Itôintegrals with respect to fractional Brownian motion.By establishing the regularity of fractional Ornstein-Uhlenbeck processes and analyzing the long-term behavior of the associated Lévy area processes,we demonstrate that our estimators are strongly consistent and pathwise stable.Our findings offer a new perspective on estimating the drift parameter matrix for fractional Ornstein-Uhlenbeck processes in multi-dimensional settings,and may have practical implications for fields including finance,economics,and engineering.

关 键 词:Itôintegration Lévy area non-geometric rough path fOU processes pathwise stability long time asymptotic high-frequency data 

分 类 号:O211.6[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象