HEAT KERNEL ON RICCI SHRINKERS(II)  

在线阅读下载全文

作  者:Yu LI Bing WANG 李宇;王兵(Institute of Geometry and Physics,University of Science and Technology of China,Hefei,230026,China;Hefei National Laboratory,Hefei,230088,China)

机构地区:[1]Institute of Geometry and Physics,University of Science and Technology of China,Hefei,230026,China [2]Hefei National Laboratory,Hefei,230088,China

出  处:《Acta Mathematica Scientia》2024年第5期1639-1695,共57页数学物理学报(B辑英文版)

基  金:supported by the YSBR-001,the NSFC(12201597);research funds from USTC(University of Science and Technology of China)and CAS(Chinese Academy of Sciences);supported by the YSBR-001;the NSFC(11971452,12026251);a research fund from USTC.

摘  要:This paper is the sequel to our study of heat kernel on Ricci shrinkers[29].In this paper,we improve many estimates in[29]and extend the recent progress of Bamler[2].In particular,we drop the compactness and curvature boundedness assumptions and show that the theory of F-convergence holds naturally on any Ricci flows induced by Ricci shrinkers.

关 键 词:Ricci flow Ricci shrinker heat kernel 

分 类 号:O186.12[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象