GLOBAL UNIQUE SOLUTIONS FOR THE INCOMPRESSIBLE MHD EQUATIONS WITH VARIABLE DENSITY AND ELECTRICAL CONDUCTIVITY  

在线阅读下载全文

作  者:Xueli KE 可雪丽(School of Mathematics and Computational Science,Xiangtan University,Xiangtan,411105,China;School of Mathematics and Information Science,Henan Polytechnic University,Jiaozuo,454000,China)

机构地区:[1]School of Mathematics and Computational Science,Xiangtan University,Xiangtan,411105,China [2]School of Mathematics and Information Science,Henan Polytechnic University,Jiaozuo,454000,China

出  处:《Acta Mathematica Scientia》2024年第5期1747-1765,共19页数学物理学报(B辑英文版)

基  金:supported by the National Natural Science Foundation of China(12371211,12126359);the postgraduate Scientific Research Innovation Project of Hunan Province(XDCX2022Y054,CX20220541).

摘  要:We study the global unique solutions to the 2-D inhomogeneous incompressible MHD equations,with the initial data(u0,B0)being located in the critical Besov space■and the initial densityρ0 being close to a positive constant.By using weighted global estimates,maximal regularity estimates in the Lorentz space for the Stokes system,and the Lagrangian approach,we show that the 2-D MHD equations have a unique global solution.

关 键 词:inhomogeneous MHD equations electrical conductivity global unique solutions 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象