A DERIVATIVE-HILBERT OPERATOR ACTING FROM LOGARITHMIC BLOCH SPACES TO BERGMAN SPACES  

在线阅读下载全文

作  者:Shanli YE Yun XU 叶善力;徐芸(School of Science,Zhejiang University of Science and Technology,Hangzhou,310023,China)

机构地区:[1]School of Science,Zhejiang University of Science and Technology,Hangzhou,310023,China

出  处:《Acta Mathematica Scientia》2024年第5期1916-1930,共15页数学物理学报(B辑英文版)

基  金:supported by Zhejiang Provincial Natural Science Foundation of China(LY23A010003).

摘  要:Letμbe a positive Borel measure on the interval[0,1).The Hankel matrix■with entriesμn,k=μn+k,whereμn=■[0,1)tndμ(t),induces,formally,the operator■where■is an analytic function in.We characterize the measuresμfor which■is bounded(resp.,compact)operator from the logarithmic Bloch space■into the Bergman space■,where 0≤α<∞,0<p<∞.We also characterize the measuresμfor which■is bounded(resp.,compact)operator from the logarithmic Bloch space■into the classical Bloch space■.

关 键 词:derivative-Hilbert operator logarithmic Bloch space Carleson measure 

分 类 号:O177[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象