检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Qijian KANG Maofa WANG 康齐健;王茂发(School of Mathematics and Statistics,Lingnan Normal University,Zhanjiang,524048,China;School of Mathematics and Statistics,Wuhan University,Wuhan,430072,China)
机构地区:[1]School of Mathematics and Statistics,Lingnan Normal University,Zhanjiang,524048,China [2]School of Mathematics and Statistics,Wuhan University,Wuhan,430072,China
出 处:《Acta Mathematica Scientia》2024年第5期2041-2050,共10页数学物理学报(B辑英文版)
基 金:supported by NSFC(12171373).
摘 要:Infinite matrix theory is an important branch of function analysis.Every linear operator on a complex separable infinite dimensional Hilbert space corresponds to an infinite matrix with respect a orthonormal base of the space,but not every infinite matrix corresponds to an operator.The classical Schur test provides an elegant and useful criterion for the boundedness of linear operators,which is considered a respectable mathematical accomplishment.In this paper,we prove the compact version of the Schur test.Moreover,we provide the Schur test for the Schatten class S_(2).It is worth noting that our main results can be applicable to the general matrix without limitation on non-negative numbers.We finally provide the Schur test for compact operators from l_(p) into l_(q).
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.21.125.194