Regulating local chemical environment in O_(3)-type layered sodium oxides by dual-site Mg^(2+)/B^(3+)substitution achieves durable and high-rate cathode  

在线阅读下载全文

作  者:Guangchang Yang Shenglong Yang Jinlian Yu Yishun Xie Chunlei Tan Feiyan Lai Qianqian Jin Hongqiang Wang Xiaohui Zhang 

机构地区:[1]Guangxi Key Laboratory of Low Carbon Energy Materials,Guangxi New Energy Ship Battery Engineering Technology Research Center,Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices,School of Chemistry and Pharmaceutical Sciences,Guangxi Normal University,Guilin 541004,China [2]College of Materials and Chemical Engineering,Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization,Hezhou University,Hezhou 542899,China [3]School of Civil Engineering and Architecture,Center for the Structure of Advanced Matter,School of Electronic Engineering,Guangxi University of Science and Technology,Institute of New Building Materials and Engineering Applications,Liuzhou 545006,China

出  处:《Chinese Chemical Letters》2024年第9期469-474,共6页中国化学快报(英文版)

基  金:supported by National Natural Science Foundation(Nos.52364035,52364036 and U23A20577);Guangxi Natural Science Foundation(Nos.2022GXNSFAA035610 and 2022GXNSFAA035471);Guangxi Science and Technology Base and Talent Project(No.GUIKE AD23026038).

摘  要:The O_(3)-Na_(0.85)Ni_(0.2)Fe_(0.4)Mn_(0.4)O_(2)layered oxide cathode material possesses the advantages of high specific capacity,low cost,and simple synthesis.However,sluggish kinetics and complicated phase transition caused by the large size difference between Na+and tetrahedral gaps lead to poor rate and cycling performance.Therefore,a scalable and feasible strategy was proposed to modulate local chemical environment by introducing Mg^(2+)and B^(3+)into O_(3)-Na_(0.85)Ni_(0.2)Fe_(0.4)Mn0.4O_(2),which can distinctly improve kinetic transport rate as well as electrochemical performance.The capacity retention of O_(3)-(Na_(0.82)Mg_(0.04))(Ni_(0.2)Fe_(0.4)Mn_(0.4))B_(0.02)O_(2)(NFMB)increases from 43.3%and 12.4%to 89.5%and 89.0%at 1 C and 3 C after 200 cycles,respectively.Moreover,the electrode still delivers high rate capacity of 93.9 mAh/g when current density increases to 10 C.Mg^(2+)ions riveted on Na layer act as a“pillar”to stabilize crystal structure and inhibit structural change during the desodiumization process.B^(3+)ions entering tetrahedral interstice of the TM layer strengthen the TM-O bond,lower Na+diffusion energy barrier and inhibits the slip of TM layer.Furthermore,the assembled full batteries with the modified cathode material deliver a high energy density of 278.2Wh/kg with commercial hard carbon as anode.This work provides a strategy for the modification of high-performance SIB layered oxide materials to develop the next-generation cost-effective energy storage grid systems.

关 键 词:Sodium-ion batteries Layered cathode material DFT calculation Local chemistry environment Magnesium/boron co-substitution 

分 类 号:TM912[电气工程—电力电子与电力传动] TQ131.12[化学工程—无机化工]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象