检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:韩慧妍 张秀权 况立群[1,2,3] 韩燮 杨晓文[1,2,3] HAN Hui-yan;ZHANG Xiu-quan;KUANG Li-qun;HAN Xie;YANG Xiao-wen(School of Computer Science and Technology,North University of China,Taiyuan 030051,China;Shanxi Key Laboratory of Machine Vision and Virtual Reality,Taiyuan 030051,China;Shanxi Province′s Vision Information Processing and Intelligent Robot Engineering Research Center,Taiyuan 030051,China)
机构地区:[1]中北大学计算机科学与技术学院,山西太原030051 [2]机器视觉与虚拟现实山西省重点实验室,山西太原030051 [3]山西省视觉信息处理及智能机器人工程研究中心,山西太原030051
出 处:《激光与红外》2024年第9期1462-1468,共7页Laser & Infrared
基 金:山西省自然科学基金项目(No.202303021211153);山西省科技重大专项计划“揭榜挂帅”项目(No.202201150401021);国家自然科学基金项目(No.62272426)资助。
摘 要:针对遥感图像复杂背景下的目标(如船舶、飞机等)具有朝向任意、尺度变化较大、数量多、目标排列密集等特点,提出一种基于改进YOLOv8L的旋转目标检测算法,用带有角度的旋转框能够更加精确定位目标。首先,在网络Head部分增加解耦角度预测头,预测目标的角度信息;其次,融合坐标注意力机制模块提高模型抑制噪声的能力;最后,在Neck部分引入自适应空间特征融合模块,抑制不同尺度特征图之间融合特征信息时的不一致性,保留有效的信息并进行融合。实验结果表明,所提算法在DOTA数据集上的检测精度达到了73.85%,较原有YOLOv8L模型提升了3.53%。The proposed algorithm utilizes an improved YOLOv8L model to detect rotating objects(such as ships and aircraft)in complex remote sensing images with arbitrary orientation,large scale variation,and dense array of objects.By incorporating a rotating frame with angle,the algorithm achieves more accurate target localization.Firstly,the decoupling angle prediction head is incorporated into the network′s head section to accurately forecast the angular information of the target object.Secondly,by integrating a coordinate attention mechanism module,the model′s capability to suppress noise is significantly enhanced.Lastly,an adaptive spatial feature fusion module is introduced in the neck section to effectively address inconsistencies in feature information fusion across different scales and retain valuable information for optimal fusion.The experimental results demonstrate that the proposed algorithm achieves a detection accuracy of 73.85%on the DOTA dataset,surpassing the original YOLOv8L model by 3.53%.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38