检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马秀梅 Ma Xiumei(Institute of Technology,Lanzhou Modern Vocational College,Lanzhou 730300,China)
出 处:《现代计算机》2024年第16期25-29,共5页Modern Computer
摘 要:Web数据库检索结果具有数据复杂、数量庞大的特点,数据间的复杂关系处于一种模糊状态,导致隶属度区别较小,分类过程需要多次迭代,效率较低。因此,提出了基于加权随机森林的Web数据库检索结果智能分类方法。提取Web数据库检索结果数据特征,并对Web数据库检索结果进行冗余处理。经过冗余处理之后,采用加权随机森林技术确定Web数据库检索结果模糊隶属度的范围。最后通过计算样本的分类权值,设计Web数据库检索结果分类器,实现Web数据库检索结果智能分类。实验结果表明:该方法的F1值均在95%以上,最长分类时间仅为7.8 s,表明本文方法能够更快速、精确地完成分类任务。The search results of Web database have the phenomenon of complex data and a large number of data.The complex relationships between data are in a fuzzy state,resulting in a small difference in membership,and the classification process requires many iterations and low efficiency.Therefore,the intelligent classification method of Web database retrieval results based on the weighted random forest is proposed.Data features of the Web database search results were extracted and the Web database search results were processed redundantly.After redundancy processing,the weighted random forest technique was used to determine the range of fuzzy membership of Web database search results.Finally,by calculating the classification weights of samples,a Web database search result classifier is designed to realize the intelligent classification of Web database search results.The experimental results show that the F1 value of this method is above 95%,and the longest classification time is only 7.8 s,indicating that the method can complete the classification task more quickly and accurately.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.23.102.227