检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:花晓雨 李冬芬 付优 毕可骏 应时[3] 王瑞锦[4] HUA Xiaoyu;LI Dongfen;FU You;BI Kejun;YING Shi;WANG Ruijin(College of Computer Science and Cyber Security(Pilot Software College),Chengdu University of Technology,Chengdu Sichuan 610059,China;College of Computer Science,Sichuan University,Chengdu Sichuan 610065,China;School of Computer Science,Wuhan University,Wuhan Hubei 430072,China;School of Information and Software Engineering,University of Electronic Science and Technology of China,Chengdu Sichuan 610054,China)
机构地区:[1]成都理工大学计算机与网络安全学院(示范性软件学院),成都610059 [2]四川大学计算机学院,成都610065 [3]武汉大学计算机学院,武汉430072 [4]电子科技大学信息与软件工程学院,成都610054
出 处:《计算机应用》2024年第10期3223-3231,共9页journal of Computer Applications
基 金:国家重点研发计划项目(2022YFB3304300,2022YFB3304303)。
摘 要:产业链风险评估预警是有效保护产业链上下游公司利益和减轻公司风险的重要措施。然而,现有方法由于忽视了产业链上下游公司之间的传播效应和公司信息的不透明性,无法准确评估公司风险,且忽略了动态财务数据对产业链的影响,无法提前感知风险,进行风险预警。针对以上问题,提出一种结合层次图(HG)神经网络与长短期记忆(LSTM)的产业链风险评估预警模型(HiGNN)。首先,利用产业链上下游关系和投融资关系构建“产业链-投资”HG;其次,利用财务特征提取模块提取公司多季度财务数据的特征;再次,利用投资特征提取模块提取投资关系图特征;最后,利用注意力机制融合财务特征和投资特征,通过图表示学习方法对公司节点进行风险分类。在真实的集成电路制造业数据集上的实验结果表明,与图注意力网络(GAT)模型、循环神经网络(RNN)模型相比,当训练比率为60%时,所提模型的准确率分别提升了14.87%、22.10%,F1值提升了12.63%、16.67%。所提模型能够有效捕捉产业链中的传染效应,提高风险识别能力,优于传统的机器学习方法和图神经网络方法。Industrial chain risk assessment and early warning are essential measures to effectively protect the interests of upstream and downstream companies in the industrial chain and mitigate company risks.However,existing methods often need to pay more attention to the propagation effects between upstream and downstream companies in the industrial chain and the opacity of company information,resulting in inaccurate risk assessment of companies and the failure to perceive risks in advance for early warning.To address the above problems,the Hierarchical Graph Neural Network(HiGNN),an industrial chain risk assessment and early warning model that combined Hierarchical Graph(HG)neural network and Long Short-Term Memory(LSTM),was proposed.Firstly,an“industrial chain-investment”HG was constructed based on the relationships between upstream and downstream companies and investment activities.Then,a financial feature extraction module was utilized to extract features from multi-quarter financial data of companies,while an investment feature extraction module was utilized to extract features from the investment relationship graph.Finally,an attention mechanism was employed to integrate the financial features with the investment features,enabling risk classification of company nodes through graph representation learning methods.The experimental results on a real integrated circuit manufacturing dataset showed that compared with the Graph ATtention network(GAT)model and the Recurrent Neural Network(RNN)model,the accuracy of the proposed model increased by 14.87%and 22.10%,and the F1-score increased by 12.63%and 16.67%with the 60%training ratio.The proposed model can effectively capture the contagion effect in the industrial chain and improve risk identification capability,which is superior to traditional machine learning methods and graph neural network methods.
关 键 词:产业链风险评估 层次图神经网络 长短期记忆网络 财务特征提取 投资特征提取
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.12.148.147