检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:姚思明 YAO Siming(Xiamen Big Data Co,Ltd,Fwian Xiamen 361000 China)
出 处:《长江信息通信》2024年第9期59-61,共3页Changjiang Information & Communications
摘 要:传统的数据整合方法往往无法有效地处理这些异构数据,因此需要一种更为智能的方法来解决这个问题,现提出基于模糊聚类算法的多源异构数据中台智能整合方法。首先,基于模糊聚类算法提取多源异构数据特征,对这些数据进行归类,然后采取适当的处理策略,其次,生成数据中台智能整合函数,汇总并处理数据中台智能整合函数的节点,最后,实现多源异构数据中台的智能聚合。实验结果表明:该实验以20min为单位时长,该数据整合的速率在整体实验中,相较于传统方法,该文方法的数据整合速率明显优于传统方法,证明基于模糊聚类算法的多源异构数据中台智能整合方法在处理大规模多源异构数据时仍具有较高的效率。Traditional data integration methods often fail to deal with these heterogeneous data effectively,so a more intelligent method is nceded to solve the problem.Now,the intelligent integration method of multi-source heterogencous data middle platform based on fuzzy clustering algorithm is proposcd.First,the features of multi-source heterogencous data are extracted based on fuzzy clustering algorithm,the data are classified,and then appropriate processing strategies are adopted.Second,the intelligent integration function of data center is generated,and the nodes of intelligent integration function of data center are summarized and processed.Finally,the intelligent aggregation of multi-source heterogencous data center is realized.Experimental results show that the experiment in 20min,the rate of data integration in the overall experiment,compared with the traditional method,the method of data integration rate is significantly better than the traditional method,prove that based on the fuzzy clustering algorithm of multi-source heterogencous data in intelligent integration method in dealing with large-scale multi-source heterogeneous data still has high efficiency.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.124.142