Aspect-Guided Multi-Graph Convolutional Networks for Aspect-based Sentiment Analysis  

在线阅读下载全文

作  者:Yong Wang Ningchuang Yang Duoqian Miao Qiuyi Chen 

机构地区:[1]Schoole of Artificial Intelligence,Chongqing University of Technology,401135,Chongqing,China [2]Department of Computer Science and Technology,Tongji University,201804,Shanghai,China

出  处:《Data Intelligence》2024年第3期771-791,共21页数据智能(英文)

基  金:supported by the National Natural Science Foundation of China under Grant 61976158 and Grant 61673301.

摘  要:The Aspect-Based Sentiment Analysis(ABSA)task is designed to judge the sentiment polarity of a particular aspect in a review.Recent studies have proved that GCN can capture syntactic and semantic features from dependency graphs generated by dependency trees and semantic graphs generated by Multi-headed self-attention(MHSA).However,these approaches do not highlight the sentiment information associated with aspect in the syntactic and semantic graphs.We propose the Aspect-Guided Multi-Graph Convolutional Networks(AGGCN)for Aspect-Based Sentiment Classification.Specifically,we reconstruct two kinds of graphs,changing the weight of the dependency graph by distance from aspect and improving the semantic graph by Aspect-guided MHSA.For interactive learning of syntax and semantics,we dynamically fuse syntactic and semantic diagrams to generate syntactic-semantic graphs to learn emotional features jointly.In addition,Multi-dropout is added to solve the overftting of AGGCN in training.The experimental results on extensive datasets show that our model AGGCN achieves particularly advanced results and validates the effectiveness of the model.

关 键 词:Graph convolutional networks Aspect-based sentiment analysis Multi-headed attention BERT encoder 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象