检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杜闯 Chuang Du(School of Mechanical Engineering,University of Shanghai for Science and Technology,Shanghai)
机构地区:[1]上海理工大学机械工程学院,上海
出 处:《建模与仿真》2024年第5期5558-5565,共8页Modeling and Simulation
摘 要:本文针对机器人拆解任务中路径起点或终点发生变化时重定位时间成本高、编程效率低的问题,提出一种基于高斯混合模型(GMM)与Jerk Accuracy模型(JA)的轨迹学习与泛化方法。首先,通过高斯混合模型和高斯混合回归获得最优示教轨迹,然后引入JA模型,从优化角度生成具有泛化能力的复现轨迹,实现任务位置约束下起点或终点轨迹的泛化。最后,设计仿真实验对所提出方法进行验证。结果表明:该方法有效解决了上述问题,相较于传统的GMM-DMP方法,实验结果显示泛化轨迹与示教轨迹的相似性有了明显提高,验证了所提方法的有效性。To address the issues of high relocation time costs and low programming efficiency in scenarios where the start or end points of paths change in robotic disassembly tasks,this study proposes a trajectory learning and generalization method based on Gaussian Mixture Model(GMM)and Jerk Accuracy(JA)model.Firstly,the optimal demonstration trajectory is obtained through the Gaussian Mixture Model and Gaussian Mixture Regression.The JA model is then introduced to optimize and generate reproduction trajectories with generalization capabilities,allowing for trajectory generalization under task position constraints at the start or end points.Finally,a simulation is designed to validate the proposed method.The results demonstrate that this method effectively solves the aforementioned issues,significantly improving the similarity between the experiment trajectories and the demonstration trajectories compared to traditional GMM-DMP trajectories,thus verifying the method’s effectiveness.
关 键 词:机器人拆解 轨迹学习 轨迹泛化 高斯混合模型 JERK Accuracy模型
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.219.8.51