A Data-driven Model to Reduce Outlet NO_(x)Concentration of SCR System in FCC Unit  

在线阅读下载全文

作  者:Zhong Chengliang Dai Ningkai Ouyang Fusheng 

机构地区:[1]International Joint Research Center of Green Energy Chemical Engineering,East China University of Science and Technology,Shanghai 200237,China

出  处:《China Petroleum Processing & Petrochemical Technology》2024年第3期136-146,共11页中国炼油与石油化工(英文版)

基  金:This work was supported by the SINOPEC:Development of Remote Diagnosis Technology for FCC Flue Gas Desulfurization and Denitrification(320076).

摘  要:Samples(25500)were collected from a selective catalytic reduction(SCR)denitrification system in a fluid catalytic cracking unit and preprocessed using the quartile method and the K-nearest neighbors interpolation method to remove outliers.Using the Pearson correlation coefficient and LightGBM feature score method,13 key operational variables were identified and used to establish a model to predict outlet nitrogen oxide(NO_(x))concentration in an SCR system with backpropagation neural network,long short-term memory(LSTM)and LSTM-attention fully connected(FC)model,respectively.The LSTM-attention FC model showed better accuracy and generalization capability compared with other models.Its mean square error,mean absolute error,and coefficient of determination on the training and test datasets were 11.32 and 12.51,3.65%and 3.97%,and 0.96 and 0.94,respectively.Furthermore,a combination of the LSTM-attention FC model with a genetic algorithm used to optimize four feature variables including ammonia pressure compensation,inlet pressure,gas inlet upper temperature,and outlet ammonia concentration.The outlet NO_(x)concentration could be controlled below 80±3 mg/m^(3),and the ammonia slip concentration could be controlled below 0.1 mg/m^(3),demonstrating that the optimization model can provide effective guidance for reducing NO_(x)emissions and ammonia slip of SCR systems.

关 键 词:FCC Process SCR Process LightGBM LSTM-attention FC genetic algorithm 

分 类 号:TE96[石油与天然气工程—石油机械设备]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象