基于自适应中值预测和霍夫曼编码的密文域可逆信息隐藏算法  

Reversible Data Hiding Algorithm in Encrypted Images Based on Adaptive Median Edge Detection and Huffman Coding

在线阅读下载全文

作  者:蒋宗宝 张敏情[1,2] 董炜娜[1,2] 孔咏骏 万洪莉 JIANG Zong-bao;ZHANG Min-qing;DONG Wei-na;KONG Yong-jun;WAN Hong-li(Key Laboratory of Network and Information Security of PAP,Xi'an 710086,China;College of Cryptography Engineering,Engineering University of PAP,Xi'an 710086,China)

机构地区:[1]网络与信息安全武警部队重点实验室,西安710086 [2]武警工程大学密码工程学院,西安710086

出  处:《科学技术与工程》2024年第27期11752-11762,共11页Science Technology and Engineering

基  金:国家自然科学基金(62272478,62102451,62102450)。

摘  要:为提高密文域可逆信息隐藏的嵌入容量,提出了一种基于自适应中值预测(adaptive median edge detection,AMED)和霍夫曼编码的密文域可逆信息隐藏算法。所提算法首先对载体图像进行块级扩展。然后,预测阶段引入自适应参数提出中值预测(median edge detection,MED)优化方案,参数会随着图像纹理特征而变化,进而提高像素预测准确度。最后,对像素高有效位信息(most significant bit,MSB)进行标记,采用霍夫曼编码对标记结果进行压缩,从而腾出空间进行秘密信息的嵌入。实验结果表明,本文算法可以在保证可逆恢复的基础上实现秘密信息的正确提取。同时,与现有算法相比,嵌入容量有所提高,平均嵌入率高达2.6320 bpp。In order to improve the embedding capacity of reversible data hiding in encrypted images,a reversible data hiding algorithm in encrypted images based on adaptive median edge detection(AMED)and Huffman coding was proposed.In the proposed algorithm,the cover image was first subjected to block-level expansion.Subsequently,the adaptive parameters were introduced during the prediction phase to propose an optimization scheme for median edge detection(MED),where parameters vary with image texture features to enhance pixel prediction accuracy.Finally,the most significant bits(MSB)of pixels were marked,and the marked results were compressed using Huffman coding to free up space for embedding secret data.Experimental results demonstrated that the algorithm could accurately extract secret data while ensuring reversibility.Moreover,compared to existing algorithms,the embedding capacity had been increased,with an average embedding rate reaching as high as 2.6320 bits per pixel(bpp).

关 键 词:自适应中值预测 霍夫曼编码 密文域可逆信息隐藏 高嵌入容量 

分 类 号:TP309.7[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象