检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:姚钰鹏 商楚浩 刘清 YAO Yupeng;SHANG Chuhao;LIU Qing(Beijing Tianma Intelligent Control Technology Co.,Ltd.,Beijing 101399,China)
机构地区:[1]北京天玛智控科技股份有限公司,北京101399
出 处:《工矿自动化》2024年第9期41-46,107,共7页Journal Of Mine Automation
基 金:国家重点研发计划项目(2023YFC2907504)。
摘 要:目前对综放智能化的研究主要聚焦于感知方面,对放煤过程智能化的研究较少,自动放煤控制技术存在自适应性不足、效率较低、放煤质量难以把控等问题。为了提升放煤过程的智能化水平与运行效率,设计了一种基于工艺引擎的规划放煤控制系统。该系统由放煤管控单元和窗口决策单元组成:规划放煤管控单元通过异步递进的放煤调度策略、柔性切换技术及规划放煤工艺编辑引擎,实现采煤机位置弱关联的自动顺序放煤及工艺在线编辑,通过关联后部刮板输送机负载,动态调整工艺启停,保障刮板输送机安全作业;窗口决策单元通过PID控制算法动态调节尾梁角度,实现放煤窗口反馈控制,采用遗传算法优化BP神经网络对放煤窗口大小进行智能决策,以适应不同工况,提高放煤质量。现场应用结果表明:基于异步递进的放煤调度策略与柔性切换技术提升了单刀自动运行效率,无需再手动接管;每一班组自动化运行刀数提升了33.3%;系统关联的后部刮板输送机负载、泵站等设备可动态调整工艺启停,每班后部刮板输送机平均停止次数下降了61.1%,可保障作业安全;工艺编辑引擎能适应多种场景下的应用,工艺调整用时大幅度降低;后部动作与前部动作相互叠加,使得单刀平均用时缩短了9.3%,提升了开采效率;倾角传感关联控制与规划放煤窗口智能决策将每日发热量提升了10.3%,改善了放煤质量。Current research on intelligent fully mechanized coal caving mining primarily focuses on perception,with limited studies on the intelligence of the coal drawing process.Existing automatic coal drawing control technologies face issues such as insufficient adaptability,low efficiency,and difficulty in quality control.To enhance the intelligence and operational efficiency of the coal drawing process,a planning coal drawing control system based on a process engine was designed.This system consisted of a coal drawing management unit and a window decision-making unit.The planning coal drawing management unit employed an asynchronous progressive scheduling strategy,flexible switching technology,and a process editing engine to achieve automated sequential coal drawing with weak correlation to the mining machine's position and online process editing.By associating with the load of the rear scraper conveyor,the system dynamically adjusted process starts and stops,ensuring safe operation of the scraper conveyor.The window decision-making unit utilized a PID control algorithm to dynamically adjust the tail beam angle,implementing feedback control of the coal drawing window.A genetic algorithm optimized a BP neural network to make intelligent decision about the size of the coal drawing window to adapt to varying operating conditions and improve coal drawing quality.Field application results indicated that the asynchronous progressive scheduling strategy and flexible switching technology enhanced the efficiency of automatic operation,eliminating the need for manual intervention.The number of automated operations per shift increased by 33.3%.The system's associated rear scraper conveyor load,pump station,and other equipment could dynamically adjust process starts and stops,resulting in a 61.1%decrease in the average stopping frequency of the rear scraper conveyor per shift,ensuring operational safety.The process editing engine accommodated various applications,substantially reducing adjustment time.The overlap of rear and front
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229