Non-thermal plasma enhanced catalytic conversion of methane into value added chemicals and fuels  

在线阅读下载全文

作  者:Shanza Baig Baharak Sajjadi 

机构地区:[1]Mewbourne School of Petroleum and Geological Engineering,University of Oklahoma,Norman,OK 73019,USA

出  处:《Journal of Energy Chemistry》2024年第10期265-301,I0006,共38页能源化学(英文版)

基  金:the University of Oklahoma (start-up fund)。

摘  要:Plasma catalysis has recently gained increased attention for its application in gas conversion,notably in processes like the dry reforming of methane aimed at transforming them into valuable chemicals and fuels.As this field is still in its early developmental stages,there is a crucial necessity to explore the synergistic mechanism between plasma and catalysts.The optimization of catalysts is imperative to improve their selectivity and conversion rates for desired products in a plasma environment.Additionally,delving into microscale investigations of plasma characteristics,such as electron temperature and the density of energetic species,is essential to enhance the stability and activity of catalysts.This review examines recent advancements in various methane conversion techniques,encompassing Dry Reforming of Methane,Steam Methane Reforming,Pa rtial Oxidation of Metha ne,and Methane Decomposition utilizing non-thermal dielectric barrier discharge(DBD)plasma.The aim is to gain a deeper understanding of plasma-catalyst interactions and to refine catalyst selection strategies for maximizing the production of desired products such as syngas,oxygenates,or higher hydrocarbons.The review delves into the catalytic mechanisms that delineate the synergistic effects between DBD plasma and catalyst in each technology,shedding light on the role of diverse catalytic properties in activating methane molecules-a pivotal step in hybrid plasma-catalytic reactions.Various approaches employed by researchers in exploring suitable catalysts and optimal reaction conditions to bolster CH_(4) conversion rates and selectivity using DBD plasma are discussed.Additionally,the review identifies gaps in the realm of plasma catalysis,underscoring the necessity for further research to fully understand the underlying principles of plasma and catalyst which are not trivial to uncover.

关 键 词:Non-thermal plasma DBD CATALYST METHANE 

分 类 号:TQ426[化学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象