检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Hongbo ZHAO Liwei GENG Wenquan FENG ChangmingZHOU
机构地区:[1]School of Electronics and Information Engineering,Beihang University,Beijing 100191,China
出 处:《Chinese Journal of Aeronautics》2024年第9期328-346,共19页中国航空学报(英文版)
基 金:supported by the National Natural Science Foundation of China (Nos.61901015,62301017).
摘 要:Federated Learning(FL),a promising deep learning paradigm extensively deployed in Vehicular Edge Computing Networks(VECN),allows a distributed approach to train datasets of nodes locally,e.g.,for mobile vehicles,and exchanges model parameters to obtain an accurate model without raw data transmission.However,the existence of malicious vehicular nodes as well as the inherent heterogeneity of the vehicles hinders the attainment of accurate models.Moreover,the local model training and model parameter transmission during FL exert a notable energy burden on vehicles constrained in resources.In view of this,we investigate FL client selection and resource management problems in FL-enabled UAV-assisted Vehicular Networks(FLVN).We first devise a novel reputation-based client selection mechanism by integrating both data quality and computation capability metrics to enlist reliable high-performance vehicles.Further,to fortify the FL reliability,we adopt the consortium blockchain to oversee the reputation informa-tion,which boasts tamper-proof and interference-resistant qualities.Finally,we formulate the resource scheduling problem by jointly optimizing the computation capability,the transmission power,and the number of local training rounds,aiming to minimize the cost of clients while guaranteeing accuracy.To this end,we propose a reinforcement learning algorithm employing an asynchronous parallel network structure to achieve an optimized scheduling strategy.Simulation results show that our proposed client selection mechanism and scheduling algorithm can realize reliable FL with an accuracy of 0.96 and consistently outperform the baselines in terms of delay and energy consumption.
关 键 词:Federated learning Vehicular edge computing Resource management Reinforcement learning Optimization techniques
分 类 号:V19[航空宇航科学与技术—人机与环境工程] U495[交通运输工程—交通运输规划与管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7