A physics-informed neural network for simulation of finite deformation in hyperelastic-magnetic coupling problems  

在线阅读下载全文

作  者:WANG Lei LUO Zikun LU Mengkai TANG Minghai 

机构地区:[1]Department of Engineering Mechanics,College of Mechanics and Engineering Sciences,Hohai University,Nanjing 211100,China [2]School of Mechanical Engineering and Mechanics,Ningbo University,Ningbo 315211,Zhejiang Province,China

出  处:《Applied Mathematics and Mechanics(English Edition)》2024年第10期1717-1732,共16页应用数学和力学(英文版)

基  金:supported by the National Natural Science Foundation of China(Nos.12072105 and 11932006)。

摘  要:Recently,numerous studies have demonstrated that the physics-informed neural network(PINN)can effectively and accurately resolve hyperelastic finite deformation problems.In this paper,a PINN framework for tackling hyperelastic-magnetic coupling problems is proposed.Since the solution space consists of two-phase domains,two separate networks are constructed to independently predict the solution for each phase region.In addition,a conscious point allocation strategy is incorporated to enhance the prediction precision of the PINN in regions characterized by sharp gradients.With the developed framework,the magnetic fields and deformation fields of magnetorheological elastomers(MREs)are solved under the control of hyperelastic-magnetic coupling equations.Illustrative examples are provided and contrasted with the reference results to validate the predictive accuracy of the proposed framework.Moreover,the advantages of the proposed framework in solving hyperelastic-magnetic coupling problems are validated,particularly in handling small data sets,as well as its ability in swiftly and precisely forecasting magnetostrictive motion.

关 键 词:physics-informed neural network(PINN) deep learning hyperelastic-magnetic coupling finite deformation small data set 

分 类 号:O343.5[理学—固体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象