检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Lucas Mieg Torben Bergold Enric Illana Mahiques Viktor Scherer Martin Mönnigmann
机构地区:[1]Automatic Control and System Theory,Ruhr University Bochum,Germany [2]Energy Plant Technology,Ruhr University Bochum,Germany
出 处:《Particuology》2024年第10期316-327,共12页颗粒学报(英文版)
摘 要:We treat the accurate simulation of the calcination reaction in particles,where the particles are large and,thus,the inner-particle processes must be resolved.Because these processes need to be described with coupled partial differential equations(PDEs)that must be solved numerically,the computation times for a single particle are too high for use in simulations that involve many particles.Simulations of this type arise when the Discrete Element Method(DEM)is combined with Computational Fluid Dynamics(CFD)to investigate industrial systems such as quicklime production in lime shaft kilns.We show that,based on proper orthogonal decomposition and Galerkin projection,reduced models can be derived for single particles that provide the same spatial and temporal resolution as the original PDE models at a considerably reduced computational cost.Replacing the finite volume particle models with the reduced models results in an overall reduction of the reactor simulation time by about 40%for the sample system treated here.
关 键 词:CALCINATION Reactive bulk Model reduction Discrete element method Galerkin projection
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49