检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡家祯 孙佳龙 黄小华[2] 朱国豪[1,2] 陶启友 袁太平[2,5] 李根 庞国良 胡昱 栗铭阳 HU Jiazhen;SUN Jialong;HUANG Xiaohua;ZHU Guohao;TAO Qiyou;YUAN Taiping;LI Gen;PANG Guoliang;HU Yu;LI Mingyang(Jiangsu Ocean University,Lianyungang 222005,China;South China Sea Fisheries Research Institute,Chinese Academy of Fishery Sciences/Key Laboratory of South China Sea Fishery Resources Exploitation&Utilization,Ministry of Agriculture and Rural Affairs,Guangzhou 510300,China;Jiangsu Marine Resources Development Research Institute,Lianyungang 222005,China;Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai),Zhuhai 519000,China;Tropical Fisheries Research and Development Center,South China Sea Fisheries Research Institute,Chinese Academy of Fishery Sciences,Sanya 572018,China)
机构地区:[1]江苏海洋大学,江苏连云港222005 [2]中国水产科学研究院南海水产研究所/农业农村部南海渔业资源开发利用重点实验室,广东广州510300 [3]江苏省海洋资源开发研究院,江苏连云港222005 [4]南方海洋科学与工程广东省实验室(珠海),广东珠海519000 [5]中国水产科学研究院南海水产研究所热带水产研究开发中心,海南三亚572018
出 处:《南方水产科学》2024年第5期113-125,共13页South China Fisheries Science
基 金:海南省重大科技计划项目(ZDKJ2021013);海南省重点研发项目(ZDYF2021XDNY305,ZDYF2023XDNY066);中国水产科学研究院中央级公益性科研院所基本科研业务费专项资金资助(2023TD97);广州市科技计划项目(2023E04J0001);连云港市重点研发计划项目(22CY080,21SH038)。
摘 要:为准确估算海水养殖网箱中的卵形鲳鲹(Trachinotus ovatus)数量,基于高频水平机械扫描式声呐和深度学习技术,提出了一种海水网箱鱼群数量的估算方法。该方法使用微分水层并逐层聚类的方式以实现计数,主要包括鱼群识别计数、鱼群聚类和鱼群数量拟合3部分。首先,使用高频水平机械扫描式声呐对海水网箱进行螺旋式的检测,获取鱼群图像信息并标注图像以构建改进的CS-YOLOv8s的训练数据集,然后训练CS-YOLOv8s模型以识别图像中的鱼类位置信息;其次,以40 cm水深间距划分网箱作为水层,对每个水层的识别坐标数据使用DBSCAN方法进行聚类处理,生成每个水层的鱼群数量数据;最后,将每个水层的数量数据与网箱中已知的鱼群数量进行拟合,构建鱼群数量拟合模型。结果表明,在海水网箱定量实验中,该方法对卵形鲳鲹数量的估算精度达到87.14%,能够较好地实现卵形鲳鲹的数量估算。To estimate the quantity of Trachinotus ovatus in marine cages accurately,a method for estimating the quantity of fish is proposed by using high-frequency horizontal mechanical scanning sonar and deep learning technology.Differentiating water layers and clustering layer by layer to realize counting is the main way of this method,which mainly involves three parts:fish identification,fish cluster and fish quantity fitting.Firstly,high-frequency horizontal mechanical scanning sonar is used to conduct spiral detection on marine cages to obtain fish image information,which is labeled to build training data set of im-proved CS-YOLOv8s.After training,the CS-YOLOv8s model is used to recognize fish location information in the images.Secondly,the cages are divided into water layers with a water depth spacing of 40 cm,and the identification coordinate data of each water layer are clustered through DBSCAN method to generate fish quantity data of each water layer.Finally,the quantity data of each water layer is fitted with the given quantity of fish in the cage,and the fitting model of fish quantity is established.The results show that in the quantitative experiment of marine cages,the accuracy of this method is 87.14%,and it can achieve a good estimation of the quantity of T.ovatus.
关 键 词:海水网箱 卵形鲳鲹 鱼群数量 高频水平机械扫描式声呐 DBSCAN密度聚类
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222