检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张丽[1] 张祯 ZHANG Li;ZHANG Zhen(School of Economics and Management,Tianjin University of Science and Technology,Tianjin 300457,China)
机构地区:[1]天津科技大学经济与管理学院,天津300457
出 处:《运筹与管理》2024年第8期184-190,共7页Operations Research and Management Science
摘 要:基于新冠肺炎疫情下医药电商交易规模的爆炸式增长,对医药电商在线评论进行文本分析,以某B2C医药电商平台2019—2021年在线评论数据为样本,利用LDA主题模型提取在线评论蕴含的主题,并构建情感词典融合深度学习的情感分析模型,对评论和主题词进行情感分析。研究结果显示:1)消费者网购医药商品始终关注平台的可靠性、物流服务、商品价格、药品的使用效果;2)新冠肺炎疫情爆发之前,消费者对服务态度、商品品牌、购买便捷性有很大关注度;疫情爆发后对感冒类和维生素类药品关注度更高,疫情的爆发会影响消费者的购药决策;后疫情时代,消费者更关注商品性价比、购买快捷性以及药品的品质;3)消费者对于在医药电商平台进行购药整体上表现出积极正面的情感态度;4)负面在线评论主要集中在价格、药效、处方药购买、虚假宣传、物流包装、限购等方面。本研究挖掘出疫情下消费者对于网购医药商品的需求重点和痛点,对医药电商平台改善服务质量提供建设性意见。The sudden outbreak of COVID-19 has stimulated consumers’online purchasing behavior,resulting in an explosive growth in the scale of pharmaceutical e-commerce transactions and an increasingly rich content of online comments on pharmaceutical e-commerce.The online reviews of pharmaceutical e-commerce contain a variety of information,including not only the overall star rating of consumers’purchasing experience,but also detailed text comments,which hide consumers’subjective feelings and consumption needs for product purchases.In order to promote the healthy development of pharmaceutical e-commerce and better meet the medication demand of consumers during the epidemic,it is urgent to carry out research on the demand of pharmaceutical online consumers under the COVID-19.From a theoretical perspective,this study focuses on online reviews of pharmaceutical e-commerce,and expands the application fields of text mining methods.From a practical perspective,this article studies the information contained in online reviews of pharmaceutical e-commerce,which can help pharmaceutical e-commerce better catch the sour spot consumer demand,timely identify problems in operating pharmaceutical e-commerce platforms,provide practical suggestions for platform operation and development,and improve consumer purchasing experience and service quality.This study uses the Python crawler tool to collect online comment data from a certain pharmaceutical e-commerce platform in 2019,2020,and 2021,and captures a total of 176602 data from 17 categories of products.By processing data cleaning,word segmentation,and word frequency statistics,high-frequency words in online reviews of pharmaceutical e-commerce are extracted and displayed through word cloud maps.Then,the LDA theme model is used to further analyze the semantic relationships behind high-frequency words,in order to better understand the connections between high-frequency words.By summarizing each theme,the concerns and needs of consumers are clarified.Next,we construct a sentiment anal
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222