检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:苟平章 郭保永 郭苗 GOU Pingzhang;GUO Baoyong;GUO Miao(College of Computer Science and Engineering,Northwest Normal University,Lanzhou Gansu 730070,China)
机构地区:[1]西北师范大学计算机科学与工程学院,甘肃兰州730070
出 处:《传感技术学报》2024年第9期1602-1612,共11页Chinese Journal of Sensors and Actuators
基 金:国家自然科学基金项目(71961028,62261048)。
摘 要:针对能量异构无线传感器网络中节点随机部署时,节点冗余造成覆盖率低的问题,提出一种基于改进灰狼优化和贪婪算法的两阶段覆盖优化方法IGWO-GA。首先,将静态节点和移动节点随机部署在目标区域内;其次,根据网络的覆盖率、节点的能量和虚拟移动距离建立多因素协同适应度函数,将灰狼包围策略划分为内层包围和外层包围,并提出猎物权重因子动态分配策略,确定移动节点的初选位置序列;最后,在终选位置优化阶段,提出贪婪算法确定节点与初选位置的最优匹配,重新进行节点部署,从而完成覆盖优化。仿真结果表明,相较于DPSO、IPSO-IRCD、GWO、GRDSA,IGWO-GA能够有效提高网络覆盖率,降低节点能耗,延长网络生命周期。To address the problem of low coverage due to node redundancy when nodes are deployed randomly in energy heterogeneous wireless sensor networks,a two-stage coverage optimization method based on improved gray wolf optimization and greedy algorithm(IGWO-GA)is proposed.Firstly,static and mobile nodes are randomly deployed in the target area.Secondly,a multi-factor cooperative fitness function is established based on the coverage of the network,the energy of the nodes and the virtual moving distance,and the gray wolf encirclement strategy is divided into inner encirclement and outer encirclement,and a strategy for dynamically allocating weight fac-tors to the prey is proposed to determine the primary sequence of mobile node locations.Finally,in the final location optimization stage,a greedy algorithm is proposed to determine the optimal matching of nodes with the initial selected location and redeploy the nodes,com-pleting the coverage optimization.The simulation results show that compared with DPSO,IPSO-IRCD,GRDSA and GWO,the IGWO-GA algorithm can effectively improve the network coverage,reduce the node energy consumption,and extend the network life cycle.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.82.96