Dual-blockchain based multi-layer grouping federated learning scheme for heterogeneous data in industrial IoT  

在线阅读下载全文

作  者:Xin Wang Haoji Zhang Haoyu Wu Hongnian Yu 

机构地区:[1]School of Electronic Information and Artificial Intelligence,Shaanxi University of Science&Technology,Xi’an,710021,China [2]School of Engineering and the Built Environment,Edinburgh Napier University,Edinburgh,EH105DT,United Kingdom

出  处:《Blockchain(Research and Applications)》2024年第3期11-21,共11页区块链研究(英文)

基  金:supported in part by Natural Science Basic Research Program of Shaanxi under Grant No.2022JM-346.

摘  要:Federated learning(FL)allows data owners to train neural networks together without sharing local data,allowing the industrial Internet of Things(IIoT)to share a variety of data.However,traditional FL frameworks suffer from data heterogeneity and outdated models.To address these issues,this paper proposes a dualblockchain based multi-layer grouping federated learning(BMFL)architecture.BMFL divides the participant groups based on the training tasks,then realizes the model training by combining synchronous and asynchronous FL through the multi-layer grouping structure,and uses the model blockchain to record the characteristic tags of the global model,allowing group-manners to extract the model based on the feature requirements and solving the problem of data heterogeneity.In addition,to protect the privacy of the model gradient parameters and manage the key,the global model is stored in ciphertext,and the chameleon hash algorithm is used to perform the modification and management of the encrypted key on the key blockchain while keeping the block header hash unchanged.Finally,we evaluate the performance of BMFL on different public datasets and verify the practicality of the scheme with real fault datasets.The experimental results show that the proposed BMFL exhibits more stable and accurate convergence behavior than the classic FL algorithm,and the key revocation overhead time is reasonable.

关 键 词:Federal learning Multi-level grouping Editable blockchain Data heterogeneity Industrial Internet of Things(IIOT) 

分 类 号:TP391.44[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象