DSN-BR-Based Online Inspection Method and Application for Surface Defects of Pharmaceutical Products in Aluminum-Plastic Blister Packages  

在线阅读下载全文

作  者:Mingzhou Liu Yu Gong Xiaoqiao Wang Conghu Liu Jing Hu 

机构地区:[1]School of Mechanical Engineering,Hefei University of Technology,Hefei 230009,China [2]School of Mechanical and Electronic Engineering,Suzhou University,Suzhou 234000,China

出  处:《Chinese Journal of Mechanical Engineering》2024年第4期194-214,共21页中国机械工程学报(英文版)

摘  要:Ensuring high product quality is of paramount importance in pharmaceutical drug manufacturing,as it is subject to rigorous regulatory practices.This study presents a research focused on the development of an on-line detection method and system for identifying surface defects in pharmaceutical products packaged in aluminum-plastic blisters.Firstly,the aluminum-plastic blister packages exhibit multi-scale features and inter-class indistinction.To address this,the deep semantic network with boundary refinement(DSN-BR)model is proposed,which leverages semantic segmentation domain knowledge,to accurately segment the defects in pixel level.Additionally,a specialized image acquisition module that minimizes the impact of ambient light is established,ensuring high-quality image capture.Finally,the image acquisition module,image detection module,and data management module are designed to construct a comprehensive online surface defect detection system.To validate the effectiveness of our approach,we employ a real dataset for instance verification on the implemented system.The experimental results substantiate the outstanding performance of the DSN-BR,achieving the mean intersection over union(MIoU)of 90.5%.Furthermore,the proposed system achieves an inference speed of up to 14.12 f/s,while attaining an F1-Score of 98.25%.These results demonstrate that the system meets the actual needs of the enterprise and provides theoretical and methodological support for intelligent inspection of product surface quality.By standardizing the control process of pharmaceutical manufacturing and improving the management capability of the manufacturing process,our approach holds significant market application prospects.

关 键 词:Surface defect detection system Deep learning Semantic segmentation Aluminum-plastic blister packages identification 

分 类 号:TQ460.69[化学工程—制药化工] TP391.41[自动化与计算机技术—计算机应用技术] TP18[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象