Photoinduced interface activation strategy for enhancing photocatalytic hydrogen production performance of plasmonic nano Bi/Ni based metalorganic framework  

纳米Bi/Ni基金属有机框架材料光诱导界面活化策略用于增强光催化产氢

在线阅读下载全文

作  者:Baichao Zhang Xuchuan Cao Chao Suo Jing Cui Xiaochuan Duan Shaohui Guo Xian-Ming Zhang 张佰超;曹旭川;索超;崔静;段小川;郭绍晖;张献明(Key Laboratory of Interface Science and Engineering in Advanced Materials,Ministry of Education,College of Chemistry,College of Chemical Engineering and Technology,Taiyuan University of Technology,Taiyuan 030024,China)

机构地区:[1]Key Laboratory of Interface Science and Engineering in Advanced Materials,Ministry of Education,College of Chemistry,College of Chemical Engineering and Technology,Taiyuan University of Technology,Taiyuan 030024,China

出  处:《Science China Materials》2024年第10期3151-3159,共9页中国科学(材料科学)(英文版)

基  金:supported by the Youth Natural Science Foundation of Shanxi Province(202103021223053);the National Natural Science Foundation of China(NSFC 22271211,22305169);the 1331 Project of Shanxi Province。

摘  要:Utilizing plasmonic non-noble metal nanoparticles(NPs)for photocatalytic hydrogen evolution reaction is a significant step toward green energy production.However,optimizing the interface between non-noble metal NPs and semiconducting materials in metal-semiconductor composites remains challenging owing to the inevitable surface oxide layers of non-noble metal NPs because the surface oxide layers of non-noble metal NPs can suppress the transfer of photoinduced carriers,leading to poor photocatalytic performance.Herein,we propose a photoinduced interface activation strategy to reduce the number of oxide layers based on a dynamic charge-transfer mechanism under illumination conditions,with Bi NPs and a Ni-based metal-organic framework(MOF)selected as model materials.Under light illumination,the photoinduced charges and plasmonic hot electrons heavily pooled at the interface between the Bi NPs and Ni-MOF,resulting in the reduction of the oxide layer on the surface of Bi,thus attenuating its hindering effect on charge transfer.This phenomenon led to a dynamically enhanced carrier concentration in the Bi/Ni-MOF composite,with an outstanding photocatalytic hydrogen evolution rate of 5822μmol g^(−1)h^(−1)achieved with the composite.The results of this study indicate that our strategy provides a new method for optimizing plasmonic non-noble metal Bi NPs with oxide layers.利用等离激元非贵金属纳米颗粒促进光催化产氢反应是向绿色能源制备迈出的重要一步.然而,由于非贵金属纳米颗粒不可避免的表面氧化层会抑制光诱导载流子的转移,导致光催化性能不佳,因此优化金属半导体复合材料中的非贵金属纳米颗粒与半导体材料之间的界面仍具有挑战性.在此,我们以Bi NPs和Ni基金属有机框架为模型材料,提出了一种基于光照条件下动态电荷转移机制的光诱导界面活化策略,实现了氧化层的减薄.在光照条件下,光诱导电荷和等离激元材料产生的热电子大量聚集在Bi NPs和Ni-MOF之间的界面上,导致Bi表面的氧化层减薄,从而削弱了其对电荷转移的阻碍作用.这一现象引起了Bi/Ni-MOF复合材料中载流子浓度的动态增强,因而复合材料的光催化产氢速率达到了5822μmol g^(−1)h^(−1).这项研究的结果表明,我们的策略为优化具有氧化层的非贵金属等离激元材料Bi NPs提供了一种新方法.

关 键 词:PLASMONIC non-noble metal interface activation metal-organic framework charge transfer photocatalytic hydrogen 

分 类 号:TQ116.2[化学工程—无机化工] O643.36[理学—物理化学] O644.1[理学—化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象