机构地区:[1]MOE International Joint Laboratory of Materials Microstructure,Institute for New Energy Materials and Low Carbon Technologies,School of Materials Science and Engineering,Tianjin University of Technology,Tianjin 300384,China [2]School of Chemistry and Chemical Engineering,Yangzhou University,Yangzhou 225009,China [3]Institute of Theoretical Chemistry,College of Chemistry,Jilin University,Changchun 130012,China
出 处:《Science China Materials》2024年第10期3176-3184,共9页中国科学(材料科学)(英文版)
基 金:financially supported by the National Key R&D Program of China(2022YFA1502902);the National Natural Science Foundation of China(U21A20286 and 22305214);the Natural Science Foundation of Tianjin City(17JCJQJC43800);the 111 Project of China;the Jiangsu Funding Program for Excellent Postdoctoral Talent(2022ZB616)。
摘 要:Developing highly efficient heterostructural photocatalysts for direct CO_(2)reduction coupled with water oxidation remains challenging,the key to which is to establish an efficient interfacial charge transport channel.Herein,we present a Cs_(3)Sb_(2)Br_(9)/Sb–C_(3)N_(4)Z-scheme heterojunction prepared with an in-situ growth method based on the Sb atomic pinning effect.As revealed by the analysis of experimental and theoretical calculation results,the introduction of Sb anchors on C_(3)N_(4)leads to the formation of an Sb–N charge transfer bridge between Cs_(3)Sb_(2)Br_(9)and C_(3)N_(4),promoting interfacial charge communication over Cs_(3)Sb_(2)Br_(9)/Sb–C_(3)N_(4)heterojunction.Moreover,it can induce the heterojunction interfacial charge transfer pathway between Cs_(3)Sb_(2)Br_(9)and C_(3)N_(4)to change from type II to the type Z-scheme,enabling the change of the catalytic site from C_(3)N_(4)to Cs_(3)Sb_(2)Br_(9),thus promoting the CO_(2)activation.As a result,Cs_(3)Sb_(2)Br_(9)/Sb–C_(3)N_(4)achieves efficient CO_(2)to CO photocatalytic conversion using water as the electron source under simulated solar light irradiation(100 mW·cm^(−2)),with the yield of 198.4μmol·g^(−1)·h^(−1),which is nearly 3-fold and 9-fold over the counterpart synthesized catalyst without Sb anchors(Cs_(3)Sb_(2)Br_(9)/g–C_(3)N_(4))and pure g–C_(3)N_(4),respectively.This work provides a new alternative solution for the design of highly efficient heterojunction photocatalysts.开发高效的异质结光催化剂,用于二氧化碳还原耦合水氧化反应仍然具有挑战性,其关键在于建立高效的界面电荷传输通道.本文报道了一种基于Sb原子锚定的原位生长Cs_(3)Sb_(2)Br_(9)/Sb–C_(3)N_(4)Z型异质结的方法.实验和理论计算表明,在C_(3)N_(4)引入Sb锚点,可在Cs_(3)Sb_(2)Br_(9)和C_(3)N_(4)之间形成了Sb–N电荷转移桥,促进了Cs_(3)Sb_(2)Br_(9)/Sb–C_(3)N_(4)的界面电荷传输.此外,它还可以诱导Cs_(3)Sb_(2)Br_(9)和C_(3)N_(4)之间的界面电荷传输路径从II型转变为Z型,实现了催化位点从C_(3)N_(4)到Cs_(3)Sb_(2)Br_(9)的转移,从而促进了二氧化碳的活化.Cs_(3)Sb_(2)Br_(9)/Sb–C_(3)N_(4)在模拟太阳光照射(100 mW・cm^(−2))下,以水为电子源,实现了高效的二氧化碳到一氧化碳的光催化转化,产率为198.4μmol・g^(−1)・h^(−1),比没有Sb锚点的对照催化剂(Cs_(3)Sb_(2)Br_(9)/g–C_(3)N_(4))和纯C_(3)N_(4)分别高出近3倍和9倍.这项工作为设计高效异质结光催化剂提供了新的替代方案.
关 键 词:photocatalytic CO_(2)reduction charge transfer Z-scheme heterojunction Cs3Sb2Br9 g-C3N4
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...