检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王冠杰 刘盛咸 周健[1] 孙志梅[1] WANG Guanjie;LIU Shengxian;ZHOU Jian;SUN Zhimei(School of Materials Science and Engineering,Beihang University,Beijing 100191,China)
机构地区:[1]北京航空航天大学材料科学与工程学院,北京100191
出 处:《金属学报》2024年第10期1345-1361,共17页Acta Metallurgica Sinica
基 金:国家重点研发计划项目No.2022YFB3807200。
摘 要:随着人工智能(AI)技术的迅速发展,机器学习在材料研发与设计中发挥着越来越重要的作用。传统机器学习模型往往为“黑盒”模型,限制了科研人员对模型决策过程的理解和信任。而可解释机器学习(XML)可以揭示机器学习模型的内部机制,提供对模型决策过程的洞察。本文从可解释机器学习的基础知识出发,概述了可解释机器学习方法的发展历程和重要里程碑,以及可解释机器学习在人工智能领域的定位和需要遵守的F.A.S.T.原则;进一步介绍了模型内部结构可解释和外部评估模型可解释的2大类可解释机器学习方法及其在材料学中的应用案例。特别地,本团队提出的可解释符号回归和可视化机器学习方法将为材料研发与设计提供新的工具。最后,展望了可解释机器学习在材料学领域的潜在发展方向。With the rapid advancement of artificial intelligence(AI),machine learning is playing an increasingly important role in materials research,development,and design.Traditional machine learning models are often“black box”models that limit researchersunderstanding of a models decision-making and undermines their confidence in the process.Explainable machine learning(XML)can reveal the internal mechanisms of these models and provide insights into their decision-making processes.This study begins with the fundamentals of XML,outlines the development history and notable milestones of XML methods,and discusses the role of XML in AI,emphasizing the Fairness,Accountability,Simplicity,and Transparency(F.A.S.T.)principles that should be followed.Furthermore,this study introduces two major categories of XML methods—those that use model-intrinsic interpretability and those that use external model interpretability—along with their applications in materials science.Specifically,the symbolic regression of XML and visualized XML methods developed by our team offer new tools for materials research and design.Finally,potential directions for XML in the field of materials science are discussed.
分 类 号:TB30[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222