A data-fusion-model method for state of health estimation of Li-ion battery packs based on partial charging curve  

在线阅读下载全文

作  者:Xingzi Qiang Wenting Liu Zhiqiang Lyu Haijun Ruan Xiaoyu Li 

机构地区:[1]School of Internet,Anhui University,Hefei,230039,China [2]Institute for Clean Growth&Future Mobility,Coventry University,UK [3]School of Mechanical Engineering,Hebei University of Technology,Tianjin,300130,China

出  处:《Green Energy and Intelligent Transportation》2024年第5期1-12,共12页新能源与智能载运(英文)

基  金:supported by the National Natural Science Foundation of China(Grant No.62303007);Doctoral Research Start-up Funding(Grant No.S020318015/028);China Postdoctoral Science Foundation(No.2023M741452).

摘  要:The estimation of State of Health(SOH)for battery packs used in Electric Vehicles(EVs)is a complex task with significant importance,accompanied by several challenges.This study introduces a data-fusion model approach to estimate the SOH of battery packs.The approach utilizes dual Gaussian Process Regressions(GPRs)to construct a data-driven and non-parametric aging model based on charging-based Aging Features(AFs).To enhance the accuracy of the aging model,a noise model is established to replace the random noise.Subsequently,the statespace representation of the aging model is incorporated.Additionally,the Particle Filter(PF)is introduced to track the unknown state in the aging model,thereby developing the data-fusion-model for SOH estimation.The performance of the proposed method is validated through aging experiments conducted on battery packs.The simulation results demonstrate that the data-fusion model approach achieves accurate SOH estimation,with maximum errors less than 1.5%.Compared to conventional techniques such as GPR and Support Vector Regression(SVR),the proposed method exhibits higher estimation accuracy and robustness.

关 键 词:Li-ion battery pack State of health Data-fusion-model method Particle filter Gaussian process regression Support vector regression 

分 类 号:TM912[电气工程—电力电子与电力传动]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象