检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈益[1] 武倩文 姜羽菲 何若男 曹辉[1] CHEN Yi;WU Qianwen;JIANG Yufei;HE Ruonan;CAO Hui(School of Physics and Information Technology,Shaanxi Normal University,Xi’an 710119,China)
机构地区:[1]陕西师范大学物理与信息技术学院,陕西西安710119
出 处:《电子设计工程》2024年第21期18-22,共5页Electronic Design Engineering
基 金:国家自然科学基金项目(11374199,12374440)。
摘 要:针对单一特征对嗓音疾病分类识别效果不佳和特征组合随机性的问题,文中提出相关互补原则组合非线性特征方法,有效提高了嗓音疾病的分类识别率。应用小波包分解对嗓音疾病信号进行非线性特征提取及主成分分析,对所提取的特征进行分层降维组合,使用SVM分类器对嗓音疾病进行分类识别。实验结果表明,分层降维特征按相关互补原则组合相较于原始特征随机组合在相同的分类器下的准确率提高了6.16%,极大地提高了嗓音疾病的识别率。To address the problems of poor classification and recognition of voice diseases by single features and randomness of feature combination,this paper proposes a method of combining nonlinear features by relevant complementary principles to effectively improve the classification and recognition rate of voice diseases.Wavelet packet decomposition is applied to extract nonlinear features and principal component analysis of the voice disease signal,the extracted features are combined in a hierarchical manner with dimensionality reduction,and the SVM classifier is used to classify and recognize voice diseases.The experimental results show that the accuracy of the hierarchical downscaled features is 6.16%higher than that of the original random combination of features with the same classifier,which greatly improves the recognition rate of voice diseases.
分 类 号:TN912[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7