基于相关互补非线性特征融合的嗓音疾病分类  

Voice disease classification based on correlated complementary nonlinear feature fusion

在线阅读下载全文

作  者:陈益[1] 武倩文 姜羽菲 何若男 曹辉[1] CHEN Yi;WU Qianwen;JIANG Yufei;HE Ruonan;CAO Hui(School of Physics and Information Technology,Shaanxi Normal University,Xi’an 710119,China)

机构地区:[1]陕西师范大学物理与信息技术学院,陕西西安710119

出  处:《电子设计工程》2024年第21期18-22,共5页Electronic Design Engineering

基  金:国家自然科学基金项目(11374199,12374440)。

摘  要:针对单一特征对嗓音疾病分类识别效果不佳和特征组合随机性的问题,文中提出相关互补原则组合非线性特征方法,有效提高了嗓音疾病的分类识别率。应用小波包分解对嗓音疾病信号进行非线性特征提取及主成分分析,对所提取的特征进行分层降维组合,使用SVM分类器对嗓音疾病进行分类识别。实验结果表明,分层降维特征按相关互补原则组合相较于原始特征随机组合在相同的分类器下的准确率提高了6.16%,极大地提高了嗓音疾病的识别率。To address the problems of poor classification and recognition of voice diseases by single features and randomness of feature combination,this paper proposes a method of combining nonlinear features by relevant complementary principles to effectively improve the classification and recognition rate of voice diseases.Wavelet packet decomposition is applied to extract nonlinear features and principal component analysis of the voice disease signal,the extracted features are combined in a hierarchical manner with dimensionality reduction,and the SVM classifier is used to classify and recognize voice diseases.The experimental results show that the accuracy of the hierarchical downscaled features is 6.16%higher than that of the original random combination of features with the same classifier,which greatly improves the recognition rate of voice diseases.

关 键 词:嗓音疾病 非线性特征 小波包分解 特征组合 

分 类 号:TN912[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象