机构地区:[1]Department of Mathematics,Manipal Institute of Technology,Manipal Academy of Higher Education,Manipal,Karnataka 576104,India [2]Department of Mathematics,S.V.A Government College,Srikalahasti 517644,India [3]Department of Mathematics,GITAM School of Science(GSS),GITAM,Bangalore,Karnataka,India [4]Department of Mathematics,College of Science,King Saud University,Riyadh 11451,Saudi Arabia [5]Department of Mechanical Engineering,Sejong University,Seoul 05006,South Korea
出 处:《Propulsion and Power Research》2024年第2期233-244,共12页推进与动力(英文)
基 金:funding this research through Researchers Supporting Project number:RSPD2024R650,King Saud University,Riyadh,Saudi Arabia.
摘 要:Entropy analysis can help to identify the sources of entropy generation in a heat transfer process more accurately than other methods,such as energy efficiency analysis.This is because entropy analysis takes into account the quality of energy as well as its quantity.Na-nofluids have already been shown to have superior heat transfer characteristics compared to conventionalfluids.Stefan blowing can further enhance the heat transfer capabilities of nano-fluids by increasing the massflux and turbulence at the surface.This can be beneficial in a wide range of applications,such as heat exchangers,electronic cooling,and solar energy devices.The convective boundary condition accounts for heat transfer effects,influencing temperature distribution and the thermal boundary layer.Depending on the direction of heat transfer,the convective boundary condition can induce cooling or heating effects on the inclined plate.This has practical implications for various engineering applications,such as the cooling of electronic devices or heating in industrial processes.Carreau nanofluids have a wide range of potential applications in heat transfer,energy storage,drug delivery,and food processing.This research investigates how the presence of Stefan blowing affects the properties of Carreau nanofluid flow across a convectively heated tilted plate.Heat and mass transport phenomena are studied using quadratic thermal radiation and chemical reaction parameters.The mathematical model for this work is based on the Buongiorno model.The governing equations are converted into a system of ordinary differential equations and then solved using the bvp4c solver.Physical parameters such as the mass transfer rate can be visualized using bar graphs.The study’s primary findings are that when the Weissenberg number increases,the velocity rises and the concentration profile declines due to Brownian motion.It is discovered that,when 0.5≤γ≤3(the inverse porosity parameter),the friction factor declines by 0.34001(in the presence of Stefan blowing),an
关 键 词:Thermal radiation BVP4C Stefan blowing Biot number Brownian motion Irreversibilit
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...