Adaptive-optical 3D microscopy for microfluidic multiphase flows  

在线阅读下载全文

作  者:Clemens Bilsing Erik Nützenadel Sebastian Burgmann Jürgen Czarske Lars Büttner 

机构地区:[1]Laboratory of Measurement and Sensor System Techniques,TUD Dresden University of Technology,01069 Dresden,Germany [2]Chair of Fluid Mechanics,Bergische Universitát Wuppertal,42119 Wuppertal,Germany [3]BIOLAS,Laboratory of Measurement and Sensor System Techniques,01069 Dresden,Germany

出  处:《Light(Advanced Manufacturing)》2024年第3期105-119,共15页光(先进制造)(英文)

基  金:project IGF-Nr.21190 BG/2 from the research association DECHEMA e.V.is supported by the Federal Ministry of Economic Affairs and Energy through the German Federation of Industrial Research Associations(AiF)as part of the programme for promoting industrial cooperative research(IGF)on the basis of a decision by the German Bundestag.Furthermore,this work is partially supported by the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)-BU 2241/6-1.

摘  要:Measurements based on optical microscopy can be severely impaired if the access exhibits variations of the refractive index.In the case of fluctuating liquid-gas boundaries,refraction introduces dynamical aberrations that increase the measurement uncertainty.This is prevalent at multiphase flows(e.g.droplets,film flows)that occur in many technical applications as for example in coating and cleaning processes and the water management in fuel cells.In this paper,we present a novel approach based on adaptive optics for correcting the dynamical aberrations in real time and thus reducing the measurement uncertainty.The shape of the fluctuating water-air interface is sampled with a reflecting light beam(Fresnel Guide Star)and a Hartmann-Shack sensor which makes it possible to correct its influence with a deformable mirror in a closed loop.Three-dimensional flow measurements are achieved by using a double-helix point spread function.We measure the flow inside a sessile,oscillating 50-μl droplet on an opaque gas diffusion layer for fuel cells and show that the temporally varying refraction at the droplet surface causes a systematic underestimation of the flow field magnitude corresponding to the first droplet eigenmode which plays a major role in their detachment mechanism.We demonstrate that the adaptive optics correction is able to reduce this systematic error.Hence,the adaptive optics system can pave the way to a deeper understanding of water droplet formation and detachment which can help to improve the efficiency of fuels cells.

关 键 词:Double-Helix point spread function Adaptive optics Particle tracking velocimetry Aberration correction Depth-resolving microscopy Closed-loop control 

分 类 号:TH742[机械工程—光学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象