3D micro-devices for enhancing the lateral resolution in optical microscopy  

在线阅读下载全文

作  者:Gordon Zyla Goran Maconi Anton Nolvi Jan Marx Dimitra Ladika Ari Salmi Vasileia Melissinaki Ivan Kassamakov Maria Farsari 

机构地区:[1]Institute of Electronic Structure and Laser,Foundation for Research and Technology-Hellas,Heraklion,Greece [2]Electronics Research Laboratory,Department of Physics,University of Helsinki,Helsinki,Finland [3]Applied Laser Technologies,Ruhr University Bochum,Bochum,Germany

出  处:《Light(Advanced Manufacturing)》2024年第2期50-63,共14页光(先进制造)(英文)

基  金:supported by the Marie Skłodowska-Curie Actions,under grant agreement No.101059253,as part of the European Union’s Horizon Europe research and innovation programme;It also received support from a Feodor Lynen Postdoctoral Fellowship awarded by the Alexander von Humboldt Foundation.Additional funding was provided by Laserlab-Europe(Proposal IDs:ULF-FORTH_002794 and ULF-FORTH_025264).We further gratefully acknowledge funding by the German Federal Ministry for Economic Affairs and Climate Action under grant 16KN053050.The authors would also like to thank Mrs.Aleka Manousaki for SEM technical support.

摘  要:Although optical microscopy is a widely used technique across various multidisciplinary fields for inspecting small-scale objects,surfaces or organisms,it faces a significant limitation:the lateral resolution of optical microscopes is fundamentally constrained by light diffraction.Dielectric micro-spheres,however,offer a promising solution to this issue as they are capable of significantly enhancing lateral resolution through extraordinary phenomena,such as a photonic nanojet.Building upon the potential of dielectric micro-spheres,this paper introduces a novel approach for fabricating 3D micro-devices designed to enhance lateral resolution in optical microscopy.The proposed 3D micro-device comprises a modified coverslip and a micro-sphere,facilitating easy handling and integration into any existing optical microscope.To manufacture the device,two advanced femtosecond laser techniques are employed:femtosecond laser ablation and multi-photon lithography.Femtosecond laser ablation was employed to create a micro-hole in the coverslip,which allows light to be focused through this aperture.Multi-photon lithography was used to fabricate a micro-sphere with a diameter of 20μm,along with a cantilever that positions the above the processed micro-hole and connect it with the coverslip.In this context,advanced processing strategies for multi-photon lithography to produce a micro-sphere with superior surface roughness and almost perfect geometry(λ/8)from a Zr-based hybrid photoresist are demonstrated.The performance of the micro-device was evaluated using Mirau-type coherence scanning interferometry in conjunction with white light illumination at a central wavelength of 600 nm and a calibration grid(Λ=0.28μm,h>50 nm).Here,the 3D micro-device proved to be capable of enhancing lateral resolution beyond the limits achievable with conventional lenses or microscope objectives when used in air.Simultaneously,it maintained the high axial resolution characteristic of Mirau-type coherence scanning interferometry.The results and op

关 键 词:Photonic nanojet Multi-photon lithography Optical microscopy MICRO-OPTICS Multi-photon grayscale lithography Extreme manufacturing 

分 类 号:TH742[机械工程—光学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象