检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李国平 谷海静 郭冬冬 LI Guoping;GU Haijing;GUO Dongdong(Binxian Coal Co.,Ltd.,Xianyang 712000,China;Shaanxi Huabin Coal Industry Co.,Ltd.,Xianyang 713500,China)
机构地区:[1]彬县煤炭有限责任公司,陕西咸阳712000 [2]陕西华彬煤业股份有限公司,陕西咸阳713500
出 处:《陕西煤炭》2024年第11期156-161,共6页Shaanxi Coal
摘 要:煤炭开采所引起的地表沉陷对生态环境极具危害,造成的经济损失也相当巨大,因此开展矿区地表下沉预测十分必要。通过对开采沉陷动态预计的改进分段Knothe时间函数和分段Weibull时间函数进行分析,以时间、空间相一致的建模思路,构建出一种适用于充填长壁开采工艺的开采沉陷动态预计的时间函数模型,即Gompertz时间函数模型。在给出参数求取方法及全盆地动态移动变形预计算法的基础上,认为该时间函数与地表点下沉特征具有非常高的一致性,对开采沉陷动态预计具有良好适用性。以陕西某矿22302工作面地表移动观测站实测数据进行Gompertz函数参数反演,与实测数据进行对比并分析其拟合精度,验证了该方法能够满足沉陷预测的要求。The surface subsidence caused by coal mining has very serious damage to the environment with increasing economic losses.Therefore,it is still very necessary to predict the surface subsidence of coal mining area.Through analysis of the improved sectional Knothe time function and sectional Weibull time function for the dynamic prediction of minging-induced subsidence,and the model-building concept of consistent time and space,a time-function model for the dynamic prediction of mining-caused subsidence was built,that is,Gompertz time function model,which is suitable for filling long-wall mining.After figuring out the methods of parameter solving and the dynamic moving prediction of total basin,we believe that the time function is highly consistent with the surface subsidence characteristics,which is applicable for the predicting of the mining-induced surface subsidence.Taking the surface moving observation station of the 22302 working face of a mine in Shaanxi as an example,the parameter reversion of Gompertz function was carried out,and its fitting precision was analyzed,verifying that the method meeting the requirement for the subsidence prediction.
关 键 词:煤炭开采 地表沉陷 沉陷预测 动态预计 Gompertz函数
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63