检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈子雄 陈旭 景永俊[1] 宋吉飞 CHEN Zi-xiong;CHEN Xu;JING Yong-jun;SONG Ji-fei(School of Computer Science and Engineering,North Minzu University,Yinchuan 750021;National(Zhongwei)New-type Internet Exchange Point,Zhongwei 755000,China)
机构地区:[1]北方民族大学计算机科学与工程学院,宁夏银川750021 [2]国家(中卫)新型互联网交换中心,宁夏中卫755000
出 处:《计算机工程与科学》2024年第10期1775-1792,共18页Computer Engineering & Science
基 金:宁夏回族自治区重点研发项目(2023BDE02017);北方民族大学中央高校基本科研业务费专项资金(2022PT_S04)。
摘 要:随着开源软件在各个领域的广泛应用,源代码漏洞已经导致了一系列严重的安全问题。鉴于这些漏洞对计算机系统的潜在威胁,检测软件中的源代码漏洞以防止网络攻击已成为一个重要的研究领域。为了实现自动化检测并降低人力成本,研究人员提出了许多基于传统深度学习的方法。然而,这些方法大多将源代码视为自然语言序列而没有充分考虑代码的结构信息,因此其检测效果受到了限制。近年来,基于代码图表示和图神经网络的源代码漏洞检测方法应运而生。全面综述了图神经网络在源代码漏洞检测中的应用,并提出了一个基于图神经网络的源代码漏洞检测通用框架。从文件级别、函数级别和切片级别3种漏洞检测粒度出发,系统地总结和阐述了现有的方法和相关数据集。最后,讨论了该领域所面临的挑战,并对未来可能的研究重点进行了展望。With the widespread application of open-source software across various domains,source code vulnerabilities have led to a series of serious security issues.Given the potential threats these vulnerabilities pose to computer systems,detecting source code vulnerabilities in software to prevent network attacks is a crucial research area.To achieve automated detection and reduce human labor costs,researchers have proposed numerous traditional deep learning-based methods.However,these methods mostly treat source code as natural language sequences and do not adequately consider the structural information of the code,limiting their detection effectiveness.In recent years,methods for detecting source code vulnerabilities based on code graph representation and graph neural networks have emerged.This paper provides a comprehensive review of the application of graph neural networks in source code vulnerability detection and proposes a general framework for source code vulnerability detection based on graph neural networks.Starting from three levels of vulnerability detection granularity:file-level,function-level,and slice-level,the existing methods and relevant datasets are systematically summarized and elucidated.Finally,the challenges faced by this field are discussed,and potential research directions for the future are outlined.
关 键 词:图神经网络 漏洞检测 数据集 数据流图 控制流图
分 类 号:TP393.08[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.59.192.254