ECMpy 2.0:A Python package for automated construction and analysis of enzyme-constrained models  

在线阅读下载全文

作  者:Zhitao Mao Jinhui Niu Jianxiao Zhao Yuanyuan Huang Ke Wu Liyuan Yun Jirun Guan Qianqian Yuan Xiaoping Liao Zhiwen Wang Hongwu Ma 

机构地区:[1]Biodesign Center,Key Laboratory of Engineering Biology for Low-carbon Manufacturing,Tianjin Institute of Industrial Biotechnology,Chinese Academy of Sciences,Tianjin,300308,China [2]National Center of Technology Innovation for Synthetic Biology,Tianjin,300308,China [3]Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering(Ministry of Education),Tianjin University,Tianjin,300072,China [4]College of Biotechnology,Tianjin University of Science and Technology,Tianjin,300457,China [5]Institute of Biopharmaceutical and Health Engineering,Tsinghua Shenzhen International Graduate School,Tsinghua University,Shenzhen,China [6]Tianjin Agricultural College,Tianjin,300384,China [7]Haihe Laboratory of Synthetic Biology,Tianjin,300308,China

出  处:《Synthetic and Systems Biotechnology》2024年第3期494-502,共9页合成和系统生物技术(英文)

基  金:the National Key Research and Development Program of China(2021YFC2100700);National Natural Science Foundation of China(32300529,32201242,12326611);Tianjin Synthetic Biotechnology Innovation Capacity Improvement Projects(TSBICIPPTJS-001,TSBICIP-PTJS-002,TSBICIP-PTJJ-007);Major Program of Haihe Laboratory of Synthetic Biology(22HHSWSS00021);Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0480000).

摘  要:Genome-scale metabolic models(GEMs)have been widely employed to predict microorganism behaviors.However,GEMs only consider stoichiometric constraints,leading to a linear increase in simulated growth and product yields as substrate uptake rates rise.This divergence from experimental measurements prompted the creation of enzyme-constrained models(ecModels)for various species,successfully enhancing chemical pro-duction.Building upon studies that allocate macromolecule resources,we developed a Python-based workflow(ECMpy)that constructs an enzyme-constrained model.This involves directly imposing an enzyme amount constraint in GEM and accounting for protein subunit composition in reactions.However,this procedure de-mands manual collection of enzyme kinetic parameter information and subunit composition details,making it rather user-unfriendly.In this work,we’ve enhanced the ECMpy toolbox to version 2.0,broadening its scope to automatically generate ecGEMs for a wider array of organisms.ECMpy 2.0 automates the retrieval of enzyme kinetic parameters and employs machine learning for predicting these parameters,which significantly enhances parameter coverage.Additionally,ECMpy 2.0 introduces common analytical and visualization features for ecModels,rendering computational results more user accessible.Furthermore,ECMpy 2.0 seamlessly integrates three published algorithms that exploit ecModels to uncover potential targets for metabolic engineering.ECMpy 2.0 is available at https://github.com/tibbdc/ECMpy or as a pip package(https://pypi.org/project/ECMpy/).

关 键 词:Enzyme-constrained model Python package Automated construction Multiple analysis functions 

分 类 号:Q78[生物学—分子生物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象