Memristor-based spiking neural networks:cooperative development of neural network architecture/algorithms and memristors  

在线阅读下载全文

作  者:Huihui Peng Lin Gan Xin Guo 

机构地区:[1]School of Materials Science and Engineering,Huazhong University of Science and Technology,Wuhan 430074,China

出  处:《Chip》2024年第2期62-78,共17页芯片(英文)

摘  要:Inspired by the structure and principles of the human brain,spike neural networks(SNNs)appear as the latest generation of artificial neural networks,attracting significant and universal attention due to their remarkable low-energy transmission by pulse and powerful capability for large-scale parallel computation.Current research on artificial neural networks gradually change from software simulation into hardware implementation.However,such a process is fraught with challenges.In particular,memristors are highly anticipated hardware candidates owing to their fastprogramming speed,low power consumption,and compatibility with the complementary metal–oxide semiconductor(CMOS)technology.In this review,we start from the basic principles of SNNs,and then introduced memristor-based technologies for hardware implementation of SNNs,and further discuss the feasibility of integrating customized algorithm optimization to promote efficient and energy-saving SNN hardware systems.Finally,based on the existing memristor technology,we summarize the current problems and challenges in this field.

关 键 词:Spike neural networks HARDWARE MEMRISTOR Algorithm Cooperative development 

分 类 号:TN60[电子电信—电路与系统] TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象