分布式雷达信号级融合检测的数据压缩与组网架构设计  

Data Compression and Network Design for Signal Fusion based Distributed Radar

在线阅读下载全文

作  者:周生华[1] 姜昊志 窦法兵 张曼[1] 王奥亚 卢靖 ZHOU Shenghua;JIANG Haozhi;DOU Fabing;ZHANG Man;WANG Aoya;LU Jing(National Key Laboratory of Radar Signal Processing,Xidian University,Xi'an Shanxi 710071,China)

机构地区:[1]西安电子科技大学雷达信号处理全国重点实验室,陕西西安710071

出  处:《现代雷达》2024年第9期30-36,共7页Modern Radar

摘  要:分布式探测是雷达领域热点问题,信号级融合探测比数据级融合探测能力更强,但通常需要的通信带宽较大。为此文中针对分布式非相参信号级目标融合探测,提出了基于雷达压缩数据的信号级融合目标检测方法。所提方法通过可并行化计算的信号级融合算法实现不同雷达量测值之间的去耦,通过双门限检测避免传输局部低能量的噪声信号,通过二次量化对过门限信号进行再次压缩,最终实现以点迹通信带宽逼近信号级融合检测的能力。基于4雷达组网的数值仿真结果验证表明,通信带宽缩减至原来的1/1 000,信噪比损失不超过0.7 dB,并据此探索雷达组网的体系架构设计问题,可支撑不同场合下的信号级协同探测工程应用。Distributed detection is a hot topic in the radar field.Signal fusion-based detection generally outperforms data fusion-based detection,but the communication cost is often huge.In order to tackle this problem,a data compression algorithm for distributed non-coherent target detection based on signal fusion is presented in this paper.In the proposed algorithm,signal fusion with parallelized computation is employed to realize the decoupling of observations from different radars,and censored detection is used to eliminate locally unpowerful noise from transmitting,and then censored observations are compressed by requantization processing.Detection performance of the proposed algorithm is capable of approaching a signal fusion-based algorithm,but only needs a low communication cost like a data fusion-based detection.Numerical simulation results with four distributed radars indicate that compared with signal-fusion based detection algorithms,the communication bandwidth of the proposed compression algorithm can be reduced to 0.1%,whereas the signal-to-noise ratio loss is less than 0.7 dB.Accordingly,the radar network structure design problem is then discussed for distributed radar to support different application scenarios.

关 键 词:雷达组网 信号级融合 目标探测 数据压缩 双门限检测 

分 类 号:TN957[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象