深度学习在医学影像学中的国内研究新趋势:基于CiteSpace的科学计量分析  

Domestic emerging trends on deep learning in medical imaging:A scientometric analysis via CiteSpace

在线阅读下载全文

作  者:张哲尧 徐凯 ZHANG Zhe-yao;XU Kai(School of Medical Imaging,Xuzhou Medical University,Jiangsu 221004,China)

机构地区:[1]徐州医科大学医学影像学院,江苏221004

出  处:《放射学实践》2024年第9期1233-1237,共5页Radiologic Practice

摘  要:目的:基于CiteSpace软件对我国深度学习在医学影像应用方面的文献进行科学计量分析,找出应用领域及研究趋势,为未来开展人工智能在医学影像应用的研究提供借鉴。方法:检索中国知网论文数据库(CNKI)中以医学影像、深度学习、机器学习和影像组学为主题的文献,应用Microsoft Excel 2019和CiteSpace 6.2.R2进行可视化分析,得出文献的发文时间、作者、机构、期刊、关键词的共现网络及关键词突现情况。结果:共1048篇文献纳入分析,年发文量呈稳步上升趋势。关键词共引聚类分析,高频聚类词为深度学习、人工智能、医学影像、影像组学、图像分割、机器学习、医学图像、迁移学习、神经网络、肺结节。关键词突现分析结果显示,近三年的研究热点为数据库、图像质量、CT图像、残差网络。结论:深度学习在医学影像应用的研究热度呈逐年上升的趋势。深度学习在医学影像中的应用研究,分布在图像处理、目标检测、图像分割和影像组学四个领域。医学影像数据库的构建和运用、残差网络及深度学习在医学影像中的应用为未来的研究趋势。Objective:Based on CiteSpace software,the literature on deep learning in medical imaging applications in China was analyzed scientifically and metrologically to find out the application areas and research trends to provide a reference for future research on the application of artificial intelligence in medical imaging.Methods:We researched the literature of China Knowledge Network Essay Database(CNKI)on medical imaging,deep learning,machine learning,and radiomics.We applied Microsoft Excel 2019 and CiteSpace 6.2.R2 to conduct visualization and analysis,which resulted in the co-occurring network of the time of issuance of the literature,the authors,the institutions,the journals,the keywords,and the keyword emergence.Results:We included 1048 documents in the analysis,with a steady upward trend in annual publications.The keyword co-citation clustering analysis showed that high-frequency clustered terms were as follows:deep learning,artificial intelligence,medical imaging,radiomics,image segmentation,machine learning,medical image,migration learning,neural network,and lung nodule.Keyword emergence analysis showed that the research hotspots in the last three years were database,image quality,CT images,and residual networks.Conclusion:The research of deep learning in medical imaging applications is increased yearly.The research on the application of deep learning in medical imaging is distributed in four areas:image processing,object detection,image segmentation,and radiomics.Future research trends include constructing and utilizing medical image databases,residual networks,and deep learning applications.

关 键 词:深度学习 人工智能 医学影像 影像组学 研究趋势 科学计量学 

分 类 号:R81[医药卫生—放射医学] G353.1[医药卫生—临床医学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象