检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:何晔 殷若宸 陆之洋[2] 徐小东 徐玉韬 HE Ye;YIN Ruochen;LU Zhiyang;XU Xiaodong;XU Yutao(Anshun Power Supply Bureau of Guizhou Power Grid Co.,Ltd.,Anshun 561000,Guizhou,China;Guizhou University,Guiyang 550025,Guizhou,China;Electric Power Research Institute of Guizhou Power Grid Co.,Ltd.,Guiyang 550002,Guizhou,China)
机构地区:[1]贵州电网有限责任公司安顺供电局,贵州安顺561000 [2]贵州大学,贵州贵阳550025 [3]贵州电网有限责任公司电力科学研究院,贵州贵阳550002
出 处:《电力大数据》2024年第6期1-10,共10页Power Systems and Big Data
基 金:国家重点研发计划项目(2022YFE0205300);国家自然科学基金(52367005)。
摘 要:随着智能电网的发展,配变重过载预警的准确性对于维持电网稳定运行至关重要。本文提出了一种新的基于VMD-CNN-BiLSTM-CBAM模型的配变短期负荷预测方法,旨在提高预警准确性。该方法首先运用K均值聚类算法筛选出相似日,并利用变分模态分解(variational mode decomposition,VMD)对相似日的负荷数据进行分解,得到一系列内在模态函数(intrinsic mode function,IMF)分量。随后,各IMF分量通过结合卷积神经网络(convolutional neural network,CNN)、双向长短时记忆网络(bidirectional long short-term memory,BiLSTM)和卷积块注意力机制(convolutional block attention module,CBAM)的混合模型进行特征学习和预测。最终,使用样本熵理论将预测得到的各IMF分量重构合成,获得配变的预测日负荷曲线。实验结果表明,本文提出的方法在预测精度上有明显提升,为配变重过载预警提供了有效的技术支撑。With the development of smart grid,the accuracy of heavy load early warning of distribution transformer is very important to maintain the stable operation of power grid.A new short-term load forecasting method for distribution transformer based on VMD-CNN-BiLSTM-CBAM model is proposed in this paper.Firstly,k-means clustering algorithm is used to filter out similar days,and variational mode decomposition(VMD)is used to decompose the load data of similar days,and a series of intrinsic mode function(IMF)components are obtained.Then,the IMF components were Convolutional neural network by a hybrid model of Convolutional Block Attention Module(CBAM),Bidirectional Long-Short-Term Memory(BILSTM)and Convolutional neural network(CNN).Finally,the predicted IMF components are reconstructed by using the sample entropy theory,and the predicted daily load curves of distribution variables are obtained.The experimental results show that the method proposed in this paper has a significant improvement in the prediction accuracy,and provides an effective technical support for the overload warning of distribution transformer.
关 键 词:配电变压器 短期负荷预测 变分模态分解 卷积神经网络 双向长短时记忆网络 卷积块注意力机制
分 类 号:TM73[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.94