检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谌卓玲 卢绍文 张亚军 潘庆玉 CHEN Zhuo-ling;LU Shao-wen;ZHANG Ya-jun;PAN Qing-yu(State Key Laboratory of Synthetical Automation for Process Industries,Northeastern University,Shenyang Liaoning 110819,China)
机构地区:[1]东北大学流程工业综合自动化国家重点实验室,辽宁沈阳110819
出 处:《控制理论与应用》2024年第9期1539-1547,共9页Control Theory & Applications
基 金:国家自然科学基金重点项目(61833004);国家重点研发计划项目(2020YFB1713602);国家自然科学基金项目(61991402,61890923,61973202,61873052)资助.
摘 要:针对复杂工业过程的指标预报问题,本文提出一种基于数据的非线性系统平滑交替辨识算法.交替辨识算法将系统的输入输出模型在工作点附近展开为线性模型和高阶非线性模型,然后交替更新线性模型参数和非线性模型参数,其中对于线性模型采用最小二乘辨识方法,对于高阶非线性模型采用长短期记忆网络进行建模.所提方法的创新之处在于,对于实际系统中的噪声易导致线性部分辨识参数震荡的问题,引入平滑因子来抑制震荡,提高预测模型的稳定性能;在非线性部分则引入压缩因子来调节在辨识过程中非线性部分的权重,总体上提高了预报的准确性.通过数值仿真验证了所提算法的性能,并与其他方法进行了对比实验,结果表明所提算法能够有效抑制辨识过程中的参数震荡,并且取得更好的辨识精度.In this paper,an alternating identification algorithm with a smoothing factor for nonlinear systems based on data is proposed for the problem of index forecasting for complex industrial processes.The alternating identification algorithm expands the input and output model of the system into a linear model and a higher-order nonlinear model near the operating point.Then,the parameters of the linear model and nonlinear model are updated alternately.The least squares identification method is used for the linear model,and the long-short memory network is used for the higher-order nonlinear model.The innovation of the proposed method is that for the problem that the noise in the actual system is easy to cause the oscillation of the identification parameters of the linear part,the smoothing factor is introduced to suppress the oscillation.In the nonlinear part,the compression factor is introduced to adjust the weight of the nonlinear part in the identification process,which improves the accuracy of the forecast.The performance of the proposed algorithm was verified by numerical simulation and compared with other methods.The results show that the proposed algorithm can effectively suppress parameter oscillation in the identification process and achieve better identification accuracy.
关 键 词:智能控制 复杂工业过程 运行指标预报 平滑交替辨识
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7