Mathematical modeling of contact tracing and stability analysis to inform its impact on disease outbreaks;an application to COVID-19  

在线阅读下载全文

作  者:Mohamed Ladib Aziz Ouhinou Abdul-Aziz Yakubu 

机构地区:[1]University of Sultan Moulay Slimane,Faculty of Sciences and Techniques,Team of Mathematics and Interactions,Béni-Mellal,Morocco [2]Howard University,Dept Math,Washington,DC,20059,USA

出  处:《Infectious Disease Modelling》2024年第2期329-353,共25页传染病建模(英文)

摘  要:We develop a mathematical model to investigate the effect of contact tracing on containing epidemic outbreaks and slowing down the spread of transmissible diseases.We propose a discrete-time epidemic model structured by disease-age which includes general features of contact tracing.The model is fitted to data reported for the early spread of COVID-19 in South Korea,Brazil,and Venezuela.The calibrated values for the contact tracing parameters reflect the order pattern observed in its performance intensity within the three countries.Using the fitted values,we estimate the effective reproduction number R_(e)and investigate its responses to varied control scenarios of contact tracing.Alongside the positivity of solutions,and a stability analysis of the disease-free equilibrium are provided.

关 键 词:Mathematical modeling Infectious diseases Discrete systems Disease-age structured populations Contact tracing Effective reproduction number COVID-19 

分 类 号:R563.1[医药卫生—呼吸系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象