机构地区:[1]State Key Joint Laboratory of Environmental Simulation and Pollution Control,International Joint Laboratory for Regional Pollution Control,Ministry of Education(IJRC),College of Environmental Sciences and Engineering,Peking University,Beijing 100871,China [2]Collaborative Innovation Center of Atmospheric Environment and Equipment Technology,Nanjing University of Information Science&Technology,Nanjing 210044,China [3]Key Laboratory of Industrial Ecology and Environmental Engineering(Ministry of Education),School of Environmental Science and Technology,Dalian University of Technology,Dalian 116024,China [4]Institute for Atmospheric and Earth System Research/Physics,Faculty of Science,University of Helsinki,P.O.Box 64,FIN-00014 Helsinki,Finland
出 处:《Environment & Health》2024年第7期486-498,共13页环境与健康(英文)
基 金:National Natural Science Foundation of China-Creative Research Group Fund(22221004);National Natural Science Foundation of China(22306002);National Key Research and Development Program of China(2022YFC3701000,Task 2);China Postdoctoral Science Foundation(2023M730054);ACCC Flagship funded by the Academy of Finland(337549);European Commission Horizon Europe project FOCI(101056783).
摘 要:Linalool,a high-reactivity volatile chemical product(VCP)commonly found in cleaning products and disinfectants,is increasingly recognized as an emerging contaminant,especially in indoor air.Understanding the gas-phase oxidation mechanism of linalool is crucial for assessing its impact on atmospheric chemistry and human health.Using quantum chemical calculations and computational toxicology simulations,we investigated the atmospheric transformation and toxicity evolution of linalool under low and high NO/HO_(2)·levels,representing indoor and outdoor environments.Our findings reveal that linalool can undergo the novel mechanisms involving concerted peroxy(RO_(2)·)and alkoxy radical(RO·)modulated autoxidation,particularly emphasizing the importance of cyclization reactions indoors.This expands the widely known RO_(2)·-dominated H-shift-driven autoxidation and proposes a generalized autoxidation mechanism that leads to the formation of low-volatility secondary organic aerosol(SOA)precursors.Toxicological analysis shows that over half of transformation products(TPs)exhibited higher carcinogenicity and respiratory toxicity compared to linalool.We also propose time-dependent toxic effects of TPs to assess their long-term toxicity.Our results indicate that the strong indoor emission coupled with slow consumption rates lead to significant health risks under an indoor environment.The results highlight complex indoor air chemistry and health concerns regarding persistent toxic products during indoor cleaning,which involves the use of linalool or other VCPs.
关 键 词:volatile chemical products(VCPs) peroxy radicals(RO_(2)·) atmospheric autoxidation secondary organic aerosol(SOA) computational toxicology
分 类 号:X592[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...