检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐侠 朱万进 薛钧赢 苏志刚[2] 郝勇生[2] XU Xia;ZHU Wan-jin;XUE Jun-ying;SU Zhi-gang;HAO Yong-sheng(CHN Energy Xuzhou Power Co.,Ltd.,Xuzhou 221135,China;Southeast University,Nanjing 210096,China)
机构地区:[1]国能徐州发电有限公司,江苏徐州221135 [2]东南大学,江苏南京210096
出 处:《现代化工》2024年第S02期348-354,共7页Modern Chemical Industry
基 金:国家自然科学基金项目(52076037)。
摘 要:基于分布式计算框架与证据学习算法,对脱硫浆液品质建立了健康品质监测模型,突破了海量脱硫系统运行数据对基于传统机器学习的浆液品质监测方法所带来的计算瓶颈,并利用该模型对江苏某1000 MW电厂的浆液品质进行了在线监测。测试表明,所建立的监测模型能够准确监测出脱硫浆液品质的恶化,与其他3类先进监测方法对比结果说明了所建立模型能够达到最优的报警及时性。将分布式计算框架结合证据理论应用于脱硫浆液品质监测是可行的,为脱硫浆液品质监测提供了一种新方法。Based on distributed computing framework and evidence learning algorithm,a robust condition monitoring model is established for desulfurization slurry,which overcomes the computational bottlenecks brought by massive operational data of desulfurization systems to traditional machine learning-based slurry condition monitoring methods.This model is utilized to perform online monitoring of slurry condition in a 1000 MW power plant in Jiangsu,China.Test results indicate that the monitoring model established is able to detect the deterioration of desulfurization slurry condition accurately.Through comparing with three other advanced monitoring methods,it is demonstrated that the model established can achieve the optimal alarm timeliness.It is feasible to apply the integration between distributed computing framework and evidence theory in desulfurization slurry condition monitoring,providing a new approach for similar monitoring.
分 类 号:TH3[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49