检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:林珂 程瑚 LIN Ke;CHENG Hu(China Post Construction Consulting Co.,Ltd.,Nanjing Jiangsu 210000;China Telecom Nanjing Branch,Nanjing Jiangsu 210009)
机构地区:[1]中邮通建设咨询有限公司,江苏南京210000 [2]中国电信股份有限公司南京分公司,江苏南京210009
出 处:《软件》2024年第8期66-68,共3页Software
摘 要:随着天线阵列规模的不断增大以及天线阵元数目的不断增加,模数转换器成本攀升。1比特量化技术能够有效减小数据规模,降低计算量,而基于1比特量化器的阵列定位是亟待解决的问题。本文提出了1比特量化器下的测向方法,该方法适用于均匀线性阵列及稀疏线性阵列,具有较强的适应性。首先根据1比特量化下协方差矩阵的多种特征建立协方差矩阵重构优化问题,再对该问题进行求解,最后通过范德蒙德分解定理得到角度的估计值。由于该方法不需要网格划分,因此实现了无网格估计,具有较高的估计精度。With the continuous increase in the size of antenna arrays and the increasing number of antenna elements,the cost of analog-to-digital converters is rising.1-bit quantization technology can effectively reduce data size and computational complexity,and array positioning based on 1-bit quantizers is an urgent problem to be solved.This article proposes a direction finding method under a 1-bit quantizer,which is suitable for both uniform linear arrays and sparse linear arrays and has high adaptability.Firstly,a covariance matrix reconstruction optimization problem is established based on the various characteristics of the covariance matrix under 1-bit quantization.Then,the problem is solved,and finally,the estimated angle value is obtained through the Vandermonde decomposition theorem.Since this method does not require grid partitioning,it achieves meshless estimation with high estimation accuracy.
分 类 号:TN911.3[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222