检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Wei-min CHEN Jin-feng LING Kewu BAI Kai-hong ZHENG Fu-xing YIN Li-jun ZHANG Yong DU 陈伟民;零锦凤;Kewu BAI;郑开宏;殷福星;张利军;杜勇(广东省科学院新材料研究所,国家钛及稀有金属粉末冶金工程技术研究中心,广东省金属强韧化技术与应用重点实验室,广州510650;暨南大学先进耐磨蚀及功能材料研究院,广州510632;Institute of High Performance Computing,Agency for Science,Technology and Research,138632,Singapore;中南大学粉末冶金国家重点实验室,长沙410083)
机构地区:[1]Guangdong Provincial Key Laboratory of Metal Toughening Technology and Application,National Engineering Research Center of Powder Metallurgy of Titanium&Rare Metals,Institute of New Materials,Guangdong Academy of Sciences,Guangzhou 510650,China [2]Institute of Advanced Wear&Corrosion Resistant and Functional Materials,Jinan University,Guangzhou 510632,China [3]Institute of High Performance Computing,Agency for Science,Technology and Research,138632,Singapore [4]State Key Laboratory of Powder Metallurgy,Central South University,Changsha 410083,China
出 处:《Transactions of Nonferrous Metals Society of China》2024年第10期3194-3207,共14页中国有色金属学报(英文版)
基 金:the financial supports from the National Key Research and Development Program of China (No. 2022YFB3707501);the National Natural Science Foundation of China (No. 51701083);the GDAS Project of Science and Technology Development, China (No. 2022GDASZH2022010107);the Guangzhou Basic and Applied Basic Research Foundation, China (No. 202201010686)。
摘 要:Based on experimental data,machine learning(ML) models for Young's modulus,hardness,and hot-working ability of Ti-based alloys were constructed.In the models,the interdiffusion and mechanical property data were high-throughput re-evaluated from composition variations and nanoindentation data of diffusion couples.Then,the Ti-(22±0.5)at.%Nb-(30±0.5)at.%Zr-(4±0.5)at.%Cr(TNZC) alloy with a single body-centered cubic(BCC) phase was screened in an interactive loop.The experimental results exhibited a relatively low Young's modulus of(58±4) GPa,high nanohardness of(3.4±0.2) GPa,high microhardness of HV(520±5),high compressive yield strength of(1220±18) MPa,large plastic strain greater than 30%,and superior dry-and wet-wear resistance.This work demonstrates that ML combined with high-throughput analytic approaches can offer a powerful tool to accelerate the design of multicomponent Ti alloys with desired properties.Moreover,it is indicated that TNZC alloy is an attractive candidate for biomedical applications.基于实验数据构建了钛基合金杨氏模量、硬度和热加工能力的机器学习模型。首先,从扩散偶的成分变化和纳米压痕数据中重新高通量评估互扩散和力学性能数据。然后,通过所构建的模型在交互循环中筛选出一种具有单一BCC相的Ti-(22±0.5)%Nb-(30±0.5)%Zr-(4±0.5)%Cr (摩尔分数)(TNZC)合金。并且,该合金具有相对较低的杨氏模量((58±4) GPa)、高纳米硬度((3.4±0.2) GPa)、高显微硬度(HV (520±5))、高压缩屈服强度((1220±18) MPa)、大于30%的大塑性应变以及优异的干磨损和湿磨损性能。结果表明,机器学习与高通量分析方法相结合可以作为一个强大的工具来加速设计具有优异性能的多元钛合金,同时也表明TNZC合金是生物医学应用中一种具有吸引力的候选材料。
关 键 词:HIGH-THROUGHPUT machine learning Ti-based alloys diffusion couple mechanical properties wear behavior
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程] TG146.23[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147