Development of surrogate-optimization models for a novel transcritical power cycle integrated with a small modular reactor  

在线阅读下载全文

作  者:Yili Zhang Jacob Bryan Geordie Richards Hailei Wang 

机构地区:[1]Department of Mechanical&Aerospace Engineering,Utah State University,Logan,UT 84322,USA

出  处:《Energy and AI》2024年第1期15-25,共11页能源与人工智能(英文)

基  金:financial support provided for the study,and Nuclear Regulatory Commission(NRC)for its financial support through the Award No.31310019M0014.

摘  要:In recent years,various types of surrogate optimization models have been proposed to reduce the computational time and to improve the emulation accuracy.In this study,by leveraging an ANN surrogate model developed earlier,a comprehensive and efficient optimization algorithm is conceived for the global optimal design of an integrated regenerative methanol transcritical cycle.It combines a unique converging/diverging classifier model into the surrogate model to form a surrogate-based model,which significantly improves the prediction accuracy of the objective function.Six binary classifiers are explored and the multi-layer feed-forward(MLF)neural network classifier is selected.In addition,within the five global optimizers being explored,the basinhopping(BH)and dual-annealing(DA)are selected.The optimal surrogate-based model and global optimizers are then combined to form a unique surrogate-optimizer model.The surrogate-optimizer model is slightly outperformed by the physics-based model in terms of the optimization results,the time consumption of the surrogate-optimizer model during the optimization searching process is 99%less than that of the physicsbased model.As the results,the surrogate-optimizer model is slightly outperformed by the physics-based model in terms of the optimization results,where the Levelized Cost of Energy(LCOE)of the Surrogate-DA and Surrogate-BH models are 77.912 and 78.876$/MWh,respectively,compared to the 77.190$/MWh of the Baseline model with fairly close penalties between them.In the meantime,the time consumption of the surrogate-optimizer model during the optimization searching process is 99%less than that of the physics-based model.

关 键 词:Surrogate model Optimization Binary classifier model Global optimizer Thermodynamic model Transcritical cycle Small modular reactors 

分 类 号:TP39[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象